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Stepped Impedance Maximally Flat Low-Pass Filter for
Microwave Applications

This example shows you how to design a stepped impedance low-pass filter for X-band applications.

Microstrip filter plays an important role in microwave applications. Almost all communication
systems contain an RF front end which performs signal processing using RF filters. Microwave low-
pass filters attenuate the unwanted signals above the cut-off frequency. These filters have very low
insertion loss and are easy to fabricate in compact sizes.

The stepped impedance low-pass microstrip filters is a cascaded structure of alternating high and low
impedance transmission lines. These lines act as semi lumped elements as they are much shorter
than the associated guided wavelength. The high-impedance lines act as series inductors and the low-
impedance lines act as shunt capacitors. Therefore, this filter structure is directly realizing the L-C
ladder type (LC-Pi) of low-pass filters.

Here the stepped impedance low-pass filter and the lumped element model is analyzed for a cut off
frequency of 9 GHz. The results of lumped element model and the simulation model are compared
and validated [1].

Design Stepped Impedance Low-Pass Filter

Design a stepped impedance low-pass filter at 9 GHz on an aluminium substrate and visualize it.

freq = 9e9;
sub  = dielectric("Name",{'Fr4'},"EpsilonR",9.6,"LossTangent",0,"Thickness",1.6e-3);
obj  = filterStepImpedanceLowPass;
obj.FilterOrder = 7;
obj.Substrate = sub;
d   = design(obj,freq,'Z0',50,'HighZ',120,'LowZ',20);
figure; show(d);
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Analyze Using Lumped Element Model

The figure shows the schematic of lumped element model for a 7th order low-pass LC-Pi
configuration.

Model the 7th order maximally flat low-pass filter at 9 GHz using the rffilter object from RF
Toolbox. Analyze its s-parameter behavior with input and output impedance at 50 ohm.

Lpfilter = rffilter('FilterType','Butterworth','ResponseType','LowPass', ...
                'Implementation','LC pi','FilterOrder',obj.FilterOrder,'PassbandFrequency',freq,...
                'PassbandAttenuation',3.0103,'Zin',50,'Zout',50,'Name','Filter');
spar = sparameters(Lpfilter,linspace(0.1e9,12e9,51));
figure; rfplot(spar);
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It is clear from the scattering parameters that the cut-off frequency is at 9 GHz and the stop band
attenuation is more than 20dB using the lumped element model.

Analyze Using Simulation Model

Analyze the simulation model for its s-parameter behavior at 50 ohm reference impedance.

s11 = sparameters(d,linspace(0.1e9,12e9,51));
figure; rfplot(s11)
ylim([-50,0]);
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The scattering parameters obtained from the filter layout realization using simulation model are more
accurate because the coupling effect between microstrip line sections are considered along with the
losses. The s-parameters plot shows that the cut-off frequency is reduced to 5.8 GHz. This reduction
is due to two reasons. One is the coupling effect between each section and the second is the design
method for modeling the filter which uses the analytical equations where those effects are not
considered. Hence, the design will give approximate results, and you should optimize the length and
width of the High and Low impedance lines to shift the cut-off frequency to the desired value.

Use the current function to plot the current distribution on the surface of the stepped impedance
low-pass filter below the cut off frequency and view its mesh.

figure;
current(d,3e9,'scale','log10');
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figure;
mesh(d);
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Designing the stepped impedance low-pass filter at S-band and below will exhibit less shift in
frequency nearly about 0.5 GHz when compared with the shift in design at high frequencies.

Conclusion

The stepped impedance low-pass filter is designed and analyzed using the design function at 9 GHz
cut off frequency. The design is compared with both lumped model and the simulation model to
understand the difference in shift in the frequency. It is seen that the shift in the frequency for
simulation model is about 2.9 GHz which is due to the coupling effect. Hence, the design parameters
of the stepped impedance low-pass filter should be optimized to achieve the desired cut-off frequency.

Reference

1. Salama,Y Battah,A Abuelhaija, 'Stepped Impedance 7th order Maximally Flat Low-Pass Filter Using
Microstrip Line for X-Band Applications', Journal of Physics: Conference Series (ICERIA ).

2. Sheetal.Mitra, 'Stepped Impedance Microstrip Low-Pass Filter Implementation for S-band
Application', International Journal of Latest Trends in Engineering and Technology (IJLTET), Vol. 5,
Issue 3, May 2015.
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Characterization and Modelling of On-Chip Square Spiral
Inductor for Si RFIC Application

This examples shows you how to model a square spiral inductor for Si (silicon) RFIC application.

The Silicon substrate is chosen for its low cost of Si IC fabrication over GaAs IC fabrication. The
potential for integration with baseband circuits makes Si the process of choice in many RFIC
applications.

The RF planar inductors play a vital role in wireless communication to meet the desired requirements
like low supply voltage, low cost, low power dissipation, low noise, high frequency of operation, and
low distortion.

The square spiral inductors are the most common in Si RF IC’s. Design the square spiral inductor
over the Si substrate and the SiO2 insulator at 3 GHz.

Define Parameters

N  = 7;
ID = 81e-6;
W  = 6e-6;
S  = 4e-6;
% Height from the ground plane to the spiral
H  = 303e-6;
GL = 230e-6;
GW = 230e-6;

Create Planer Square Spiral Inductor on Si and Sio2 Substrate

Model the 7 turn square spiral inductor is modelled using the defined parameters in microstrip line
form on Silicon and Sio2 substrate

Ind = spiralInductor;
Ind.NumTurns          = N;
Ind.InnerDiameter     = ID;
Ind.Width             = W;
Ind.Spacing           = S;
Ind.Height            = H;
Ind.GroundPlaneLength = GL;
Ind.GroundPlaneWidth  = GW;
d = dielectric('Name',{'Silicon','sio2'},'EpsilonR',[11.9,4.1],'LossTangent',[0.005,0],'Thickness',[300e-6,3e-6]);
Ind.Substrate = d;
figure; show(Ind);
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Use the sparameters function to compute the s-parameters and plot it.

spar = sparameters(Ind,linspace(1e9,5e9,21));
figure; rfplot(spar);
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The s-parameters plot shows that after 430 MHz the S11 and S22 monotonically increases towards 0
dB. S12 and S21 decreases showing that energy is stored in inductor and not radiated. The behavior
of S11 and S21 satisfies the law of conservation of energy.

Use the inductance function to calculate the measure of inductance of the square spiral inductor at 3
GHz.

figure; inductance(Ind,linspace(1e9,5e9,21));
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It is observed from the plot that the inductance of the spiral inductor increases with increase in
frequency. Based on analyzing the Q- factor the peak in Q will be the design frequency of the inductor
[2] , According to the reference the design frequency is around 3 GHz and the calculated inductance
of the spiral is around 11.09 nH which is suitable for RFIC application.

figure; 
mesh(Ind,'View','Metal');
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Use the current function to plot the current distribution on the surface of the square spiral Inductor.

figure;
current(Ind,3e9,'scale','log10');
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Reference

1 Beeresha R Sa, A M Khanb, Manjunatha Reddy H Vc ,'' The Design and EM-Simulation of Square
Spiral Inductor Using SimpleEquations'',Materials Today: Proceedings 5 (2018) 10875–10882.

2 Tuan Huu Bui, "Design and Optimization of a 10 nH Square-Spiral Inductor for Si RF Ics",
University of North Carolina at Charlotte, October, 1999
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Bandstop and Bandpass Filters with Open Microstrip Line
Stubs Using Behavioral and EM Simulation

This example shows different ways to create microstrip Line bandpass and bandstop filters using
open circuit stub.

Convert the RF PCB catalog into a circuit element using a pcbElement object and build a Tee shaped
circuit. Analyze the circuit using the behavioral model and EM simulation. Use the traceTee shape
object in RF PCB Toolbox to create a tee shaped trace. Convert the shape into a PCB component and
analyze it. Analyze the PCB using EM Simulation and compare the results with the circuit
counterpart.

The dimensions of the microstrip line and the stub in the figure are taken from the reference. The left
image shows the circuit representation with the port numbers and the right side image shows the
traceTee structure with same dimensions.
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Circuit Element with Behavioral Model for Microstrip Line

Create a circuit object and three microstripLine objects to build the circuit as shown in the
figure. Update the value of EpsilonR and Height to 2.33 and 1.57 mm respectively.

ckt = circuit;
c1 = microstripLine('Length',46e-3,'Width',4.6e-3,'Height',1.57e-3);
c1.Substrate.EpsilonR = 2.33;

c2 = microstripLine('Length',46e-3,'Width',4.6e-3,'Height',1.57e-3);
c2.Substrate.EpsilonR = 2.33;

c3 = microstripLine('Length',18.4e-3,'Width',4.6e-3,'Height',1.57e-3);
c3.Substrate.EpsilonR = 2.33;

Use the pcbElement object to convert the microstrip lines to circuit objects and set the Behavioral
flag to true so that the computation is done using the analytical equations. In the circuit model, the
microstrip discontinuities are not modelled, hence the results might be slightly different from EM
analysis.

p1  = pcbElement(c1,'Behavioral',true);
p2 = pcbElement(c2,'Behavioral',true);
p3 = pcbElement(c3,'Behavioral',true);

Use the add function to form the circuit and use the ports numbers as shown in the circuit above. Use
port numbers 1 and 2 for the first microstrip line and connect another microstrip line from ports 2 to
3 which forms a series connection. Connect the third microstrip line from the port 2 to 4 which forms
a tee network.

add(ckt,[1 2 0 0],p1);
add(ckt,[2 3 0 0],p2);
add(ckt,[2 4 0 0],p3);
setports(ckt,[1 0],[3 0]);

Use the sparameters function to calculate the s-parameters for the circuit and plot it using the
rfplot function.

S = sparameters(ckt,linspace(1e9,10e9,21));
figure,rfplot(S);
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Circuit Element with EM simulation for Microstrip Line

Use the pcbElement object to convert the microstrip lines to circuit objects and set the Behavioral
flag to false so that the computation is done using EM Simulation.

ckt1 = circuit;
p1   = pcbElement(c1,'Behavioral',false);
p2   = pcbElement(c2,'Behavioral',false);
p3   = pcbElement(c3,'Behavioral',false);

Use the add function to form the circuit and use the port numbers as shown in the circuit above. Use
port numbers 1 and 2 for the first microstrip line and connect another microstrip line from ports 2 to
3 which forms a series connection. Connect the third microstrip line from the port 2 to 4 which forms
a tee network.

add(ckt1,[1 2 0 0],p1);
add(ckt1,[2 3 0 0],p2);
add(ckt1,[2 4 0 0],p3);
setports(ckt1,[1 0],[3 0]);

Use the sparameters function to calculate the s-parameters for the circuit and plot it using the
rfplot function. Each microstripLine section is solved using the EM solver and the s-parameters
calculated are combined to give the combined response of the circuit.

S = sparameters(ckt1,linspace(1e9,10e9,21));
figure;
rfplot(S);
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Creating PCB Stack of traceTee Shape with EM Simulation

Use the traceTee shape to create the open circuit stub and use the dimensions as shown in the
figure above and visualize it.

obj = traceTee;
obj.Length = [92e-3 18.4e-3];
obj.Width  = [4.6e-3 4.6e-3];
figure;
show(obj);
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Use the pcbComponent to convert the shape into a PCB stack. The pcbComponent creates the PCB
stack up for traceTee shape and assigns the FeedLocations at the three open ends of the shape.
Assign the dielectric and groundplane to the Layers property of the pcbComponent. Also assign the
BoardShape to the grounplane. In the current design, the stub is required as open circuit, hence
delete the feed at the third location.

pcb = pcbComponent(obj);
gnd = traceRectangular('Length',obj.Length(1),'Width',90e-3);
d   = dielectric('EpsilonR',2.33);
pcb.BoardThickness = 1.57e-3;
pcb.Layers{2}      = d;
pcb.Layers{3}      = gnd;
pcb.BoardShape     = gnd;
pcb.FeedLocations(3,:)=[];
figure;
show(pcb);
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Use the mesh function to manually mesh the structure and set the MaxEdgeLength to 10 mm.

figure,mesh(pcb,'MaxEdgeLength',10e-3);
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Use the sparameters function to calculate the s-parameters of the structure and plot it using
rfplot function.

S1 = sparameters(pcb,linspace(1e9,8e9,35));
figure;
rfplot(S1);
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Design at Specific Frequency

The resonance of the bandstop filter depends on the stub length which needs to be quarter
wavelength at the resonant frequency. In the above example the stub is quarter wavelength at 2.9
GHz and hence is resonance is observed at that frequency. If the resonance is expected at any other
frequency then the stub length needs to be quarter wavelength at that frequency.

References

1 Alexander B. Yakovlev, Ahmed I. Khalil , Efficient MOM-based generalized scattering matrix
method for the integrated circuit and multilayered structures in waveguide
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Design of Dual-Fed Square Microstrip Patch Antenna for
Bluetooth Low Energy Applications

This example shows how to use the pcbComponent and pcbcascade functionality of RF PCB
Toolbox™ to design and analyze the dual-fed square microstrip patch antenna for Bluetooth Low
Energy (BLE) applications.

You can use different feed arrangements to achieve circular and elliptical polarization or by using two
orthogonal modes excited with a 90 degree phase difference between them. The two orthogonal
modes can be accomplished by adjusting the physical dimensions of the patch and using either single
or multiple feeds. For a square patch element, the easiest way to excite for circular polarization is to
feed the element at two adjacent edges, to excite the two orthogonal modes as shown in the figure.
For a quadrature phase difference, feed the element with a 90 degree power divider or a 90 degree
hybrid as shown in the figure below.

Create Variables

Centerfreq = 2.4e9;
freq       = linspace(2e9,3e9,41);

Design of Branchline Coupler

Use the design function on the couplerBranchline object to create a branchline coupler at the
desired frequency and visualize it. The default substrate for branchline coupler is Teflon.

coupler = design(couplerBranchline,Centerfreq);
figure;
show(coupler);
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Create Variables for Square Patch and the Connecting Feed Lines

The patchLength variable creates a square patch. The feedLineWidth and feedLineLength
variable creates the feed lines to the antenna. The portSpacing matches the gap between the feed
lines to that of the output ports of the branchline coupler. The patchLength and feedLineLength
are close to half wavelength at design frequency.

patchLength    = 41.9e-3;
feedLineLength = 65.7e-3;
feedLineWidth  = 3e-3;
portSpacing    = coupler.ShuntArmLength/2+coupler.PortLineWidth/2;

Use the traceRectangular object to create a square patch with side length as patchLength. Use
the rotateZ function to rotate the shape by 45 degrees and visualize it.

patch    = traceRectangular('Length',patchLength,'Width',patchLength);
patch    = rotateZ(patch,45);
figure; 
show(patch);
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Use the traceRectangular object to create two feed lines with same length, width, and equal
spacing on either side of the X-axis. Perform a Boolean add operation for the shapes patch,
feedline1 and feedline2 and visualize it.

feedLine1 = traceRectangular('Length',feedLineLength,'Width',feedLineWidth,'Center',[-feedLineLength/2,portSpacing]);
feedLine2 = traceRectangular('Length',feedLineLength,'Width',feedLineWidth,'Center',[-feedLineLength/2,-portSpacing]);
antShape = patch+ feedLine1+ feedLine2;
figure;
show(antShape);
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Translate the shape along the X-axis such that the feedlines are aligning at x = 0.

translate(antShape,[feedLineLength,0,0]);

 Design of Dual-Fed Square Microstrip Patch Antenna for Bluetooth Low Energy Applications

1-25



Define the substrate parameters and create a dielectric object. Create a groundplane using the
antenna.Rectangle object and use pcbStack to create a PCB antenna. Assign the dielectric and
ground plane to the Layers property on pcbStack. Assign the FeedLocations to the edge of the
feedline and set the BoardThickness to Height on the pcbStack and visualize the antenna.

EpsilonR     = coupler.Substrate.EpsilonR;    % Dielectric EpsilonR
Height       = coupler.Height;                % Height of the Substrate 
LossTangent  = coupler.Substrate.LossTangent; % Loss Tangent of the Substate

d1  = dielectric('Name',{'Teflon'},'EpsilonR',EpsilonR,'LossTangent',LossTangent,'Thickness',Height);
Gnd = antenna.Rectangle('Length',120e-3,'Width',80e-3,'Center',[120e-3/2,0]); 

ant = pcbStack;
ant.Layers = {antShape,d1,Gnd};
ant.BoardShape    = Gnd;
ant.FeedLocations = [0 portSpacing 1 3;0,-portSpacing 1 3];
ant.BoardThickness = Height;
figure;
show(ant);

1 RF PCB Examples

1-26



Use the impedance function to plot the impedance of the antenna from 2.2 GHz to 2.6 GHz

figure;
impedance(ant,linspace(2.2e9,2.6e9,31));
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The result shows that the impedance of the patch is around 400 ohms at 2.4 GHz. In order to match
the impedance of the patch with the 50 ohm line, connect a quarter wavelength transformer at the
end of the feedline to transform the impedance to 50 ohm. The impedance of the quarterwave
transformer is the geometric mean of the impedances to be matched. Hence the geometric mean of
50 ohm and 400 ohm value comes out to be 141 ohms.

Use the microstripLine design to calculate the width of the line with a Z0 of 141 ohm.

line = microstripLine;
line.Height = coupler.Height;
line = design(line,Centerfreq,"LineLength",0.25,"Z0",141);

Use the traceRectangular object to create two quarter wave transformer lines with same length,
width, and equal spacing on either side of the X-axis. Perform a Boolean add operation for the shapes
patch, Line1 and Line2 and visualize it.

Line1     = traceRectangular('Length',line.Length,'Width',line.Width,'Center',[line.Length/2,portSpacing]);
Line2     = traceRectangular('Length',line.Length,'Width',line.Width,'Center',[line.Length/2,-portSpacing]);
translate(antShape,[line.Length,0,0]);
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antShape  = antShape + Line1+ Line2;
show(antShape);
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Define the substrate parameters and create a dielectric to use in the PCB stack of the antenna.
Create a groundplane using the antenna.Rectangle shape.

Use the pcbStack to create a PCB antenna and assign the dielectric and ground plane to the Layers
property on pcbStack. Assign the FeedLocations to the edge of the feedline and set the
BoardThickness to Height on the pcbStack and visualize the antenna. The below code performs
these operations and creates the PCB antenna.

EpsilonR     = coupler.Substrate.EpsilonR;    % Dielectric EpsilonR
Height       = coupler.Height;                % Height of the Substrat 
LossTangent  = coupler.Substrate.LossTangent; % Loss Tangent of the Substate

d1  = dielectric('Name',{'Teflon'},'EpsilonR',EpsilonR,'LossTangent',LossTangent,'Thickness',Height);
Gnd = antenna.Rectangle('Length',120e-3,'Width',80e-3,'Center',[120e-3/2,0]); 
ant               = pcbStack;
ant.Layers        = {antShape,d1,Gnd};
ant.BoardShape    = Gnd;
ant.FeedLocations = [0 portSpacing 1 3;0,-portSpacing 1 3];
ant.BoardThickness = Height;
figure,show(ant);
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Use the pcbcascade object to join the coupler and the patch antenna. To obtain the circular
polarization, connect the isolated port on the branchline coupler to a matched load of 50 ohm. The
isolated port feed location in FeedLocations property of the pcbStack is copied into the
ViaLocations. The feed location on the isolated port is deleted. The lumpedElement object is
used to create an impedance of 50 ohms and the location of the Lumped Element is given at the
ViaLocations. Assign this lumpedElement to the Load property on the pcbStack and visualize
the antenna. The below code performs these operations.

pcbAntenna                    = pcbcascade(coupler,ant);
pcbAntenna.ViaLocations       = pcbAntenna.FeedLocations(2,:);
pcbAntenna.ViaDiameter        = pcbAntenna.FeedDiameter;
pcbAntenna.FeedLocations(2,:) = [];
r = lumpedElement;
r.Impedance = 50;
r.Location  = [pcbAntenna.ViaLocations(1:2),pcbAntenna.BoardThickness];
pcbAntenna.Load = r;
figure;
show(pcbAntenna);
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Use the sparameters function to calculate the s-parameters of the antenna and plot the result using
the rfplot function.

spar = sparameters(pcbAntenna,freq);
figure;
rfplot(spar);
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The result shows that the antenna is a good match from 2 GHz to 3 GHz.

Use the pattern function to plot the 3D radiation pattern of the antenna.

figure;
pattern(pcbAntenna,Centerfreq);

 Design of Dual-Fed Square Microstrip Patch Antenna for Bluetooth Low Energy Applications

1-33



The antenna has a gain of around 7 dBi at the design frequency.

Use the axialRatio function to plot the axial ratio of the antenna at 2.45 GHz. Use the axial ratio to
determine the polarization of the antenna. For the circular polarization, the axial ratio must be less
than 3 dB.

figure;
axialRatio(pcbAntenna,Centerfreq,90,0:5:180);
title('Axial Ratio for Azimuth = 90 Plane');
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The result shows that the axial ratio is below 3 dB for all the elevation angles and hence the antenna
exhibits a circular polarization. In the orthogonal plane when azimuth angle is 0 degrees, the circular
polarization is obtained between the elevation angles of 60 to 90 degrees.

Use the axialRatio function to plot the axial ratio of the antenna with frequency.

figure;
axialRatio(pcbAntenna,freq,0,90);
title('Axial Ratio with Frequency');
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The axial ratio with frequency shows that the antenna exhibits circular polarization around 2.4 GHz.

References

[1] Balanis, C.A. "Antenna Theory. Analysis and Design", p. 860, Wiley, New York, 3rd Edition, 2005.
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Create and Analyse Dual Characteristics of Complementary
Split Ring Resonators from Gerber Files

This example shows how to create a complementary split ring resonator (CSRR) from Gerber files and
subsequently analyze the model. The Gerber file format is used in printed circuit board (PCB)
manufacturing and is available in two formats: RS-274D, which was the initial release standard, and
RS-274X, which is the newer extended Gerber format. The RF-PCB Toolbox™ supports the newer
RS-274X format both to generate Gerber files from a PCB model and to create the PCB model from a
set of Gerber files.

The CSRRs have been proposed for the synthesis of metamaterials. The basic unit cell that exhibits
negative permittivity is imported using the gerber files in the first section, which shows band stop
response at 0.9 GHz, and later the left-handed (LH) behavior of the metamaterial is achieved which
exhibits pass band at the same frequency by creating the slit on the top layer of the transmission line
and the same is analyzed [1].

This example shows how to model the above-described PCB structure from the gerber file.

Introduction

A set of Gerber files includes information about layer geometry, layer mask, solder paste usage on the
layers, drill file and so on. To create a PCB model out of these files, you need layer files that specify
the PCB geometry, and if available a drill file to specify any plated through-hole (PTH) vias. The
geometry of the layers is specified through either a top and a bottom layer file, with extensions .gtl
and .gbl, or a Gerber file, with the extension .gbr. The RF-PCB Toolbox supports the Excelling format
to specify drill information with file extensions .txt or .drl.

The complimentary metamaterial resonator structure contains three layers on which the top layer is
the transmission line in microstrip form and the bottom layer is the CSRR. The CSRR model is
created from the gerber file in first section. Later, a gap capacitor is introduced by modifying the top
layer of CSRR in second section and further, their behaviors are analyzed in the third section . 

Import Top and Bottom Layer from Gerber file

The first step is to import a top-layer and bottom-layer Gerber file from the workspace using the
gerberRead function. This will create a PCBReader object. The PCBReader object provides access to
the stack up that holds the information of the metal and dielectric layers and also any drill files that
describe a PTH via from one metal layer to another if available.

The CSRR model imported using StackUp method contains three layers corresponding to the model
of CSSR and returns the model with additional two layers of air dielectric as the first and last layer by
default.

Import the top and bottom layers from the gerber file by passing .gtl and .gbl file as inputs to the
function gerberRead and use stack up method to create the layers.

P1 = gerberRead('CSRRWOSlit.gtl','CSRRWOSlit.gbl');
P1.StackUp;

Pass the created PCB reader object as input to pcbComponent and clean up the layer vertices by
rounding it off up to some tolerance. Here 6 is picked as the tolerance as the layer dimensions are in
mm units. Later, view the top and bottom layer of the structure to measure its feed width and board
dimensions.
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The imported PCBReader object contains five layers, where layer2 and layer4 holds the top and
bottom layer of the CSRR structure.

pb = pcbComponent(P1);

pb.Layers{2}.Vertices =  round(pb.Layers{2}.Vertices,6);
pb.Layers{4}.Vertices =  round(pb.Layers{4}.Vertices,6);

% Visualize the top and bottom layer of the PCB structure
figure; 
show(pb.Layers{2});

figure; 
show(pb.Layers{4});
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The pointers are placed to measure the dimensions of Feed Width and the board shape as shown
above. It is observed that, the Feed Width is 1.15 mm and ground plane length and width are 16 mm
each.

Next step is to modify the layers of pcb object. Set the PCB Board dimensions, feed diameter and feed
location from the measured values accordingly and visualize the PCB model.
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%Define substrate
h   = 1.27e-3;
sub = dielectric('Name',{'Alumina'},'EpsilonR',10.2,'LossTangent',0.0023,'Thickness',h);

% Define Board thickness
pb.BoardThickness = h;

% Define pcb Layers
pb.Layers = {pb.Layers{2},sub,pb.Layers{4}};

% Define Board Shape
gndL = 16e-3;
gndW = 16e-3;
gnd  = antenna.Rectangle('Length',gndL,'Width',gndW);
pb.BoardShape = gnd;

% Define Feed Diameter and set Feed location from the measured values
Fw = 1.15e-3;
pb.FeedDiameter = Fw/2;
pb.FeedViaModel = 'strip';
pb.FeedLocations =  [-gndL/2,0,1,3;gndL/2,0,1,3];

% Visualize pcb Component (pb)
figure; 
show(pb)
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Create Slit Model of CSRR

Create the slit complimentary split ring resonator by introducing the slit in the microstrip line which
exhibits gap capacitor due to which the structure can show its characteristics as LH Metamaterial.

Modify the top layer from the pcbComponent object (pb) by introducing the slit in the top layer of
CSSR structure and visualize it.

pbs = copy(pb);
g = 0.15e-3;
W = 3.85e-3;
% Create the rectangle to introduce the gap 
trace = traceRectangular('Length',g,'Width',W,'Center',[0,0]);
toplayer = pbs.Layers{1};
% Substract the rectangle from the top layer 
slit  = toplayer-trace;
% Reassign the top layer
pbs.Layers{1} = slit;
% Visualize pcb Component (pbs)
figure; 
show(pbs)

Analyze Above CSRR Model With and Without Slit

The CSRR model shown without slit (pb) and with slit (pbs) on the top layer is analyzed in the
frequency range of 0.1 GHz to 2 GHz using the sparameters method to compute the transmission co-
efficient and is plotted using the rfplot method.
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% Analyse sparameters of CSRR without slit
spar = sparameters(pb,linspace(0.1e9,2e9,51));
figure; 
rfplot(spar,2,1);
% Analyse sparameters of CSRR with slit
spar = sparameters(pbs,linspace(0.1e9,2e9,31));
hold on; 
rfplot(spar,2,1)
title('Transmission Co-efficient of CSRR models');
legend('S21 without slit','S21 with slit');

It is observed from the above graph that the transmission coefficient S21 for the CSRR metamaterial
of negative permittivity lines exhibits the band stop response at resonant frequency of 0.9 GHz, and
the Left-handed behavior which is achieved by introducing gap capacitors in microstrip line exhibits
the band pass response at the same frequency.

Conclusion

The microstrip lines loaded with CSRRs has been analyzed in two different forms on the same
substrate and is observed that they exhibit stop and pass band at same desired frequency.

The gerberRead function is used to import the gerber files of CSRR. One can create, a PCBReader
object, and subsequently use that object to generate the PCB model using a pcbComponent object.
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Prototype, Design, and Analysis of SIW based Microstrip
Tapered Transmission Line

This example shows how to design and analyze a Substrate Integrated Waveguide (SIW) microstrip
transmission line using Gerber files.

High performance microwave components can be designed using a novel approach called the
Substrate Integrated Waveguide (SIW) technology. This approch combines the advantages of planar
technology, such as low fabrication costs, with the low loss inherent to the waveguide solution.

This SIW tapered transmission line model is intended to operate in the microwave frequency range of
10GHz to 15 GHz [1] .

Define Parameters

Below is the schematic diagram of SIW based microstrip tapered transmission line model.

L   = 40.016e-3;
Wt  = 3.81e-3;
W   = 12e-3;
PW  = 2.46e-3;
L1  = 2.1e-3;
PL  = 6e-3;
gndW = W;
gndL = L+(2*L1)+(2*PL);
% define substrate
h = 0.8e-3;
sub = dielectric('Name',{'duriod'},'EpsilonR',2.2,'LossTangent',0,'Thickness',h);

Create and Analyze SIW Based Tapered Transmission Line

Use the defined parameters to create the microstrip transmisison line. A tapered section is used to
match the impedance between a 50 Ω microstrip line in which quasi-TEM and TE10 mode are the
dominant mode and their electric current distributions are approximate in the profile of the structure
are shown.

Create the model using pcbComponent object and visualize it using show function.

% Create the tapered planar microstrip line trace 
trace1 = traceRectangular('Length',L,'Width',W);
v = [-L/2, Wt/2, 0; -(L/2+L1), PW/2, 0; -(L/2+L1),-PW/2,0;-L/2, -Wt/2, 0];
trace2 = antenna.Polygon('Vertices',v);
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trace3 = antenna.Polygon('Vertices',-v);
Port1  = traceRectangular('Length',PL,'Width',PW,'Center',[-gndL/2+PL/2+1e-12,0]);
Port2  = traceRectangular('Length',PL,'Width',PW,'Center',[gndL/2-PL/2-1e-12,0]);
Mtrace = trace1+trace2+trace3+Port1+Port2;

In order to build the PCB model, use pcbComponent object. Mtrace created above will be the top
layer on the rectangular SIW.

p = pcbComponent;
p.BoardThickness = h;
gnd = traceRectangular('Length',gndL,'Width',gndW,'Center',[0,0]);
p.BoardShape = gnd;
p.Layers = {Mtrace,sub,gnd};

Define feed and via locations. The FeedLocations and ViaLocations are the property with an array of
four elements, in which the 1st and 2nd elements define the x and y co-ordinates, 3rd and 4th
elements define the layers of connection.

% Define Feed location
p.FeedDiameter = PW/2;
p.FeedLocations = [-gndL/2,0,1,3;gndL/2,0,1,3];
p.ViaDiameter = 1e-3/2;
% Define Via location
offset = 0.5e-3;
viax = -L/2+offset;
viay = -W/2+offset;
for i=1:40
    viaSp = 0.5e-3;
    ViapointX(i) = viax + (i-1)*(viaSp)+(i-1)*(p.ViaDiameter);
    ViapointY(i) = viay;
    layer1(i) = 1;
    layer2(i) = 3;
    Viapoint1     = [ViapointX' ViapointY' layer1' layer2'];
end
for i=1:40
    viaSp = 0.5e-3;
    ViapointX1(i) = viax + (i-1)*(viaSp)+(i-1)*(p.ViaDiameter);
    ViapointY1(i) = -viay;
    layer11(i) = 1;
    layer21(i) = 3;
    Viapoint2     = [ViapointX1' ViapointY1' layer11' layer21'];
end
p.ViaLocations = [Viapoint1;Viapoint2];
figure; show(p);
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Use the sparameters function to compute the s-parameters in the frequency range of 10 - 15 GHz
and plot it.

freq = linspace(10e9,15e9,31);
spar = sparameters(p,freq);
figure; rfplot(spar,[2 1],1)
axis tight

It is obseved from the plot that the reflection coefficient S11 is less than -15 dB over the frequency
band and the transmission coefficient S21 is around -0.3 dB to -0.7 dB across the entire band.

Prototype the model using Gerber files

Gerber files are open ASCII vector format files that contain information on each physical board layer
of the PCB design. Circuit board objects, like copper traces, vias, pads, solder mask and silkscreen
images, are all represented by series of coordinates. These files are used by PCB manufacturers to
translate the details of the design into the physical properties of the PCB.

To generate these files, two additional pieces of information is required apart from the PCB design.
The first is the type of connector to be used and the second is the PCB manufacturing service/viewer
service. The type of RF connector determines the pad layouts on the PCB. The RF PCB Toolbox™
provides a catalog of PCB services and RF connectors. The PCB services catalog supports,
configuring the Gerber file generation process for manufacturing as well as for online viewer-only.
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Generation of Gerber files

Gerber files contains the collection of files that describe a Printed Circuit Board (PCB) . Each file
describes a specific aspect of the PCB design. For example, .gtl and .gbl files contains the information
about the metal regions corresponding to the signal and ground that are filled with copper traces.
Similarly, .gts and .gbs files holds the information about the solder mask, which is applied to protect
and insulate the metal regions. Design information is encoded into the silkscreen layer designated
by .gto and .gbo files.

To understand the generation process for these files, use a PCB manufacturing service with an online
viewer and render the design.

Online viewer for Gerber files

The PCB services catalog contains different manufacturing servies type which can accesed using the
object PCBServices. In this example, MayhewWriter is used to configure the Gerber file generation
process and view them using the Mayhewlabs free online 3D Gerber viewer. Select an SMA edge
connector from the available catalog and modify it accordingly. The PCB model, PCB services, and the
RF PCB connector are used to create a PCBWriter.

 s = PCBServices.MayhewWriter;
s.Filename = 'SIWMicrostripLine';
% 
PW = PCBWriter(p,s);
PW.UseDefaultConnector = 0;

Using the above created PCBWriter, execute the gerberWrite command to generate the Gerber files
for the SIW Model.

gerberWrite(PW)
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The collection of files are generated and placed in a folder with the same name as assigned in the
Filename property of the particular PCB services. This folder is located in the current working
directory. The files in the folder are shown in the image below.

If the file name is not specified then the folder name and the files in the folder are named as
"untitled".
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Running the above example automatically opens up the Mayhew Labs PCB manufacturing service in
the default internet browser. Further to view the 3D PCB model drag and drop the gerber files as
shown below.

Click on Done to to view the proposed PCB design as shown below.

Reference

1 Bouchra Rahal,et.al,"SUBSTRATE INTEGRATED WAVEGUIDE POWER DIVIDER, CIRCULATOR
AND COUPLER IN [10-15] GHZ BAND", International Journal of Information Sciences and
Techniques, DOI:10.5121/ijist.2014.4201 , March, 2015.
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Model and Analyze Microstrip Interdigital Capacitor as
Bandpass filter

The interdigital capacitor (IDC) is a multi-finger periodic structure and are frequently used in
microstrip microwave integrated circuits for RF or microwave development. The interdigital
capacitors use the capacitance that occurs across a narrow gap between conducting fingers. They are
optimized based on applications.

This example shows the analysis of interdigital capacitor that shows band pass respone in the
frequency range of 3.5 GHz to 3.9 GHz. The capacitance is calculated in the desired range with and
without de-embedding the effect of microstrip feeder line.

Create an interdigital capacitor and visualize it.

obj = interdigitalCapacitor;
figure; show(obj);

Use the sparameters function to compute the s-parameters and plot it using the rfplot function
from RF Toolbox to understand the behavior of the designed capacitor.

freq = linspace(2e9,8e9,51);
spar = sparameters(obj,freq);
figure; rfplot(spar);
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The s-parameters plot shows that the insertion loss is minimal in the frequency range of 3.5 GHz to
3.9 GHz which exhibits band pass like behavior. The capacitor exhibits low attenuation in this
frequency range.

These kinds of capacitor are used in RF couple or DC blocks where the capacitor should have minimal
attenuation and reflection when the signal goes through them.

Analyze the measure of capacitor without deembedding the feeder line effect using the capacitance
function from 3.5 GHz to 3.9 GHz. Use the mesh function to manually mesh the structure.

figure; mesh(obj,'MaxEdgeLength',0.0017)
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freq = linspace(3.5e9,3.9e9,21);
figure;capacitance(obj,freq,'DeEmbed',0)
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It is observed that there is a sudden supirious spike at 3.82 GHz which is due to the effect of feeder
line. Further to eliminate that effect the DeEmbed option in the capacitance method has to be
enabled.

figure;capacitance(obj,freq,'DeEmbed',1)
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Hence, by de-embeddeding the effect of feeder line it substracts the additional phase that is added
due to the feed line. The capacitance of the capacitor is around 1 pF to 1.5 pF in the frequency range
of 3.5 to 3.9 GHz.

The capacitance of the capacitor can be analyzed over the desired frequency range using different
options such as deembed the effect of feeder line and include the effect of parasitics by enabling the
the options in capacitance method.

Reference

1 NIHAD DIB,QIU ZHANG,ULRICH ROHDE,"NEW CAD MODEL OF THE MICROSTRIP
INTERDIGITAL CAPACITOR", Active and Passive Electronic Components,Vol. 27,December, 2004
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Introduction to Passive Planar Spiral Inductors
This example shows you how to design, visualize, and analyze different types of spiral inductors.

The modern wireless communication system requires low cost, small size, and higher efficiency
circuits design. The circuit need considerable amount of passive (inductor and capacitor) components
for designing RF components like power amplifier, oscillators, microwave switches, combiners, and
splitters circuits.

In radio frequency integrated circuits (RFIC) the spiral inductors dominates overall circuit
performance and it is frequently used as a passive component in modern RFIC’s design technology.

Here the passive planar spiral inductor is modeled and analysed. This example shows the analyses of
different types of spiral inductors.

Model Spiral Inductor

The passive spiral inductor can be realized in different structure like square, circular, hexagonal, and
octagonal with multiturns. The multi-turn inductors are used for higher inductance value design.

The spiral Inductor is a two port multiturn planar inductor with multiple dielectric layers. A turn in
the spiral inductor is the length of a complete 360-degree revolution.

The width and spacing of the strips in the spiral inductor are uniform throughout. You can feed the
inductor in such a way that the inner end is routed out from the layer below the inductor by a via hole
or the input port and the outer end or output port is extended to the end of the board at the same
layer .

The figure shown below consists of four spiral inductors along with their physical parameters to
model spiral inductors
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Planar Spiral Inductor in Embedded Microstrip Form with Homogeneous Substrate

Create and analyze a multiturn spiral inductor with different configurations like square, circular,
hexagonal, and octagonal by changing the property SpiralShape. Calculate the measure of
inductance at 600 MHz.

Square Spiral Inductor

Create and analyze a multiturn square spiral inductor.

Ind = spiralInductor('SpiralShape','square');
figure; show(Ind);
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Use the sparameters function to compute the s-parameters and plot it using the rfplot
function.

spar = sparameters(Ind,linspace(300e6,800e6,21));
figure;
rfplot(spar);
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The s-parameters plot shows that after 430 MHz the S11/S22 is monotonically increasing towards 0
dB and S12/S21 is decreasing accordingly. This plot tells that the energy is stored in inductor and not
radiated. The behavior of S11 and S21 satisfies the law of conservation of energy.

Use the inductance function to plot the measure of inductance of the square spiral inductor at 600
MHz and view the mesh.

Ls = inductance(Ind,600e6)

Ls = 4.3781e-08

figure; mesh(Ind,'View','Metal');

1 RF PCB Examples

1-58



Circular Spiral Inductor

Create and analyze multiturn circular spiral inductor.

Ind = spiralInductor('SpiralShape','circle');
figure; show(Ind);
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Use the inductance function to calculate the measure of inductance of the circular spiral inductor at
600 MHz.

Lc = inductance(Ind,600e6)

Lc = 3.8092e-08

Octagonal Spiral Inductor

Create and analyze a multiturn octagonal spiral inductor.

Ind = spiralInductor('SpiralShape','Octagon');
figure; show(Ind);
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Use the current function to plot the current distribution on the surface of the octagonal spiral
Inductor.

figure;
current(Ind,600e6,'scale','log10');
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Use the inductance function to plot the measure of inductance of the octagonal spiral inductor at 600
MHz.

Lo = inductance(Ind,600e6)

Lo = 3.7661e-08

Hexagonal spiral Inductor

Create and analyze multiturn hexagonal spiral inductor.

Ind = spiralInductor('SpiralShape','Hexagon');
figure; show(Ind);
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Use the inductance function to calculate the measure of inductance of the hexagonal spiral inductor
at 600 MHz.

Lh = inductance(Ind,600e6)

Lh = 3.6937e-08

Use the charge function to plot the charge distribution on the surface of the octagonal spiral
Inductor.

figure;
charge(Ind,600e6,'scale','log10');
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The Magnitude of inductance for the different configurations of the four turn spiral inductors are
shown in the table below. It is observed that the inductance of the square spiral inductor is more
when compared to the rest of the spiral shapes.

The magnitude of the inductance increases as the length of the inductor and area increases. It is
evident from the figures shown for the four configurations of spiral inductors, that the inductance of
spiral inductors increases with the increase in trace length and area of the inductors such that:
Square> Circular>Octagonal>Hexagonal. The circular and square structures are most popular of the
spiral inductors because of less complex analytical design and ease of fabrication. However, other
polygonal spirals have also been used in circuit design. Some designers prefer polygons with more
than four sides to improve performance of quality factor of the spiral inductors.
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Design and Analysis of Hairpin Micro-Strip Line Bandpass Filter
This example shows how to design and analyze Hairpin filter in RF PCB Toolbox™.

Most wireless applications require high quality, low cost, and compact sized RF or microwave filters.
Planar filters can be used to fulfill this purpose. Among planar filters hairpin filters are available in
reduced size as compared to parallel coupled line structures. These hairpin filters may conceptually
be obtained by folding the resonators of parallel-coupled half-wavelength resonator filters. The
Hairpin filters are widely used as bandpass filters in transmitters and receivers at various
frequencies.

Create Variables

N = 3;
Ripple = 0.1;
BandWidth = 20;
Z0 = 50;
f = linspace(1.5e9,2.5e9,51);
EpsilonR = 6.15;
Height = 1.27e-3;

Tapped-Input Hairpin Filter

Use the filterHairpin object to create the hairpin filter and visualize it.

filter = filterHairpin;
figure;
show(filter);
view(-37,30);
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Use the design function to design a 3rd order hairpin filter with a RippleFactor of 0.1 dB and 20%
fractional bandwidth and visualize it.

filter.FilterOrder = N;
filter.Height = Height;
filter.Substrate.EpsilonR = EpsilonR;
filter = design(filter,2e9,'FBW',BandWidth,'RippleFactor',Ripple);
figure;
show(filter);
view(-37,35);
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Use the sparameters function to calculate the s-parameters for the hairpin filter and plot it using
rfplot function.

spar = sparameters(filter,f);
figure;
rfplot(spar);
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The result shows that the filter resonates close to the design frequency of 2 GHz. The design function
uses analytical equations and the spacing between the resonators is generally calculated using the
practical approach. Hence the design function sets the spacing to 0.5 mm between all the resonators.
To get the accurate results, the spacing between the resonators needs to be adjusted. Increase the
bandwidth of the filter by reducing the spacing between the resonators.

Set the Spacing between the resonators to 0.05 mm.

filter.Spacing = [0.05e-3 0.05e-3];

Use the sparameters function to calculate the s-parameters for the hairpin filter and plot it using
rfplot function.

spar = sparameters(filter,f);
figure;
rfplot(spar);
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Shifting Resonators and Feed Lines

You can also shift the resonators and the feeds using the ResonatorOffset and FeedOffset
properties of filterHairpin.

Change the ResonatorOffset and FeedOffset and visualize it.

filter.ResonatorOffset = [0e-3 3e-3 5e-3];
filter.FeedOffset(2) =  filter.FeedOffset(2) + 5e-3;
figure;
show(filter);
view(-37,37);
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Comparing Results with the Paper

Change the dimensions of the filter as given in [1]. Change the spacing on the filterHairpin and
set the spacing to 0.4 mm and set the length of the U-Shaped resonator to 2 mm.

filter.ResonatorOffset = [0e-3 0e-3 0e-3];
filter.Resonator(1).Length(1) = 20.4e-3;
filter.Resonator(1).Length(2) = 2e-3;
filter.Resonator(1).Length(3) = 20.4e-3;
filter.Spacing = [0.4e-3 0.4e-3];
filter.PortLineWidth = 1.85e-3;
filter.FeedOffset = [-4.565e-3 -4.565e-3];
figure;
show(filter);
view(-37,29);
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Use the sparameters function to calculate the s-parameters for the hairpin filter and plot it using
rfplot function.

spar = sparameters(filter,f);
figure;
rfplot(spar);
title('S-Paramters for the Hairpin Filter');
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Plot the absolute values of S21 over the frequency range using rfplot function.

figure;
rfplot(spar,2,1,'abs');
title('Magnitude - S21');
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Coupled-Input Hairpin Filter

Use the filterHairpin object to create the hairpin filter. Change the FeedType property to
Coupled to create the hairpin filter with a coupled Input.

filterC = filterHairpin;
filterC.FeedType = 'Coupled';
filterC.FeedOffset = [0 0];
figure;
show(filterC);
view(-37,35);
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Use the sparameters function to calculate the s-parameters for the hairpin filter and plot it using
rfplot function. The frequency range for the simulation is taken as 1.5 GHz to 2.5 GHz with 301
points. As this below simulation takes more time to run, load the sparameters from the s2p file and
then plot the S-Parameters.

sparC = sparameters('sparams.s2p');
figure;
rfplot(sparC);
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The result shows narrow band resonances at 1.7 GHz, 1.85 GHz, and 2 GHz. For this type of Input,
the ResonatorOffset and FeedOffset can be used to create different types of Hairpin Filters.

References
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Analyzing Crosstalk Between PCB Traces
This example shows how to create a pair of close traces using traceLine object and performs
analysis on those traces to calculate the amount of unwanted coupling to the passive trace.

Create traces

trace1 = traceLine;
trace1.Length = [10 5*sqrt(2) 10 5*sqrt(2) 10]*1e-3;
trace1.Angle  = [0 45 0 -45 0];
trace1.Width  = 3e-3;
trace1.Corner = "Miter";
trace2 = copy(trace1);
trace2.Length = [11 6*sqrt(2) 6 6*sqrt(2) 11]*1e-3;
trace2 = translate(trace2, [0,-5e-3,0]);
trace = trace1 + trace2 ;
figure;
show(trace);

Create PCB Component

Use the pcbComponent to create the PCB stack for the shape. For creating a PCB stack, the trace
created above is used as a top layer. The middle layer is a dielectric and the bottom layer is a ground
plane. Use the dielectric object to create the Teflon dielectric. Use traceRectangular object to
create a rectangular ground plane. Assign the trace, dielectric(d), and groundplane to the Layers
property of the pcbComponent. Assign the FeedLocations at the ends of the trace and visualize it.
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pcb = pcbComponent;
d = dielectric('Teflon');
groundplane = traceRectangular('Length', 40e-3,'Width',40e-3,'Center',[40e-3/2,0]);
pcb.Layers = {trace,d,groundplane};
pcb.FeedLocations = [0,0,1,3;40e-3,0,1,3;40e-3,-5e-3,1,3;0e-3,-5e-3,1,3];
pcb.BoardShape = groundplane;
pcb.FeedDiameter = trace1.Width/2;
figure;
show(pcb);

Use current function to plot the current distribution on the trace

figure;
current(pcb,1e9,'scale','log');
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Use the layout function to show the layout of the pcbComponent.

figure;
layout(pcb);

 Analyzing Crosstalk Between PCB Traces

1-79



Use sparameters function to calculate the leakage power from Trace 1 to Trace 2.

spar = sparameters(pcb,linspace(0.1e9,10e9,51));
figure;
rfplot(spar,2:4,1)
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The S31 shows the power coupled from the top trace to the bottom trace. This is the unwanted
coupling from the top line to the bottom line and must be reduced. To reduce the coupling, increase
the spacing between the traces.

Increase the Spacing Between Traces

trace1 = traceLine;
trace1.Length = [10 5*sqrt(2) 10 5*sqrt(2) 10]*1e-3;
trace1.Angle  = [0 45 0 -45 0];
trace1.Width  = 3e-3;
trace1.Corner = "Sharp";
trace2 = copy(trace1);
trace2.Length = [11 6*sqrt(2) 6 6*sqrt(2) 11]*1e-3;
trace2 = translate(trace2, [0,-10e-3,0]);
trace = trace1 + trace2 ;
figure;
show(trace);

 Analyzing Crosstalk Between PCB Traces

1-81



Create PCB Component

Update the properties of the created earlier and visualize it.

groundplane = traceRectangular('Length', 40e-3,'Width',40e-3,'Center',[40e-3/2,0]);
pcb.Layers = {trace,d,groundplane};
pcb.FeedLocations = [0,0,1,3;40e-3,0,1,3;40e-3,-10e-3,1,3;0e-3,-10e-3,1,3];
figure;
show(pcb);
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Use current function to plot the current distribution on the trace.

figure;
current(pcb,1e9,'scale','log');
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Use the layout function to show the layout of the pcbComponent.

figure;
layout(pcb);
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Use sparameters function to calculate the leakage power from Trace 1 to Trace 2.

spar = sparameters(pcb,linspace(0.1e9,10e9,101));
figure;
rfplot(spar,2:4,1)
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When the spacing between the traces is doubled to 10 mm, the coupling also reduces by around 10
dB and reaches to less than -25 dB.

Plot the Crosstalk Induced Voltage

Define a pulse signal with rise time and fall time and use the timeresp function to plot the output
signal at port 2 for the input pulse signal.

sampleTime = 1e-9;
t = (0:999)'*sampleTime;
input = [0.05*(0:20)';ones(1,78)'; 0.05*(20:-1:0)'; zeros(1,80)'];
input = repmat(input,5,1);
fit   = rationalfit(spar);
output = timeresp(fit(3,1),input,sampleTime);
figure;
yyaxis left;
plot(t,input);
yyaxis right;
plot(t,output);
title('Crosstalk between the Traces');
xlabel('Time (sec)');
ylabel('Voltage (volts)');
legend('Vinput','Output','Location','SouthWest');
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The output signal magnitude is around 0.1 mV as seen from the result.
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Create and Analyze PCB Interconnects using Custom Traces
This example shows how to use the custom traces traceLine and tracePoint in RF PCB Toolbox
and create PCB traces with different shapes and orientations. The traceLine uses the lengths and
angles properties to create a trace and the tracePoint uses points to create the trace. For both the
traces, corner property can be set to Sharp, Miter, and Smooth to create specific corners at all the
bends.

Line Trace

Use the traceLine object to create a line trace. Observe that the traceLine has Length, Angle,
Width, and Corner as properties. The line trace is a combination of all the rectangles which are
created based on the Length, Angle, and the Corner property is used to specify the type of corner
at each bend. You can specify the corners as sharp, miter, or smooth . By default the Corner property
is set to Sharp.

trace = traceLine

trace = 
  traceLine with properties:

          Name: 'mytraceLine'
    StartPoint: [0 0]
        Length: [0.0200 0.0200 0.0200 0.0150]
         Width: 0.0050
         Angle: [90 0 -90 45]
        Corner: "Sharp"

Visualize the traceLine using the show function.

figure;
show(trace);
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Change the Length and Angle property on the traceLine and set the Corner to smooth.

trace.Length = [10 5*sqrt(2) 10 5*sqrt(2) 10]*1e-3;
trace.Angle  = [0 45 0 -45 0];
trace.Width  = 3e-3;
trace.Corner = "smooth";
figure;
show(trace);
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The output shows that the trace is created using the angle specified for each corresponding length
input. The corners are specified as smooth and hence it creates curved edges.

Extend the Line Trace

Add a 15 mm line perpendicular to the earlier trace. So add 15 mm to the Length property and 90
deg to the Angle property of the trace and set the corner to Miter.

trace.Length = [10 5*sqrt(2) 10 5*sqrt(2) 10 15]*1e-3;
trace.Angle  = [0 45 0 -45 0 90];
trace.Width  = 3e-3;
trace.Corner = "Miter";
figure;
show(trace);
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The output shows that the trace is created using the angle specified for each corresponding length
input. The corners is specified as Miter and hence it creates mitered edges. Observe that the ends of
the trace are at [0,0] and [40,15] mm where the feed points are assigned in the next section.

Create PCB Component

Use the pcbComponent to create the PCB stack for the shape. For creating a PCB stack, use the
trace created as the top layer. The middle layer is a dielectric and the bottom layer is ground plane.
Use the dielectric object to create the FR4 dielectric. Use traceRectangular object to create a
rectangular ground plane. Assign the trace, dielectric(d), and groundplane to the Layers property
on the pcbComponent. Assign the FeedLocations at the ends of the trace and visualize it.

pcb = pcbComponent;
d = dielectric('FR4');
groundplane = traceRectangular('Length', 60e-3,'Width',30e-3,'Center',[60e-3/2,0]);
pcb.Layers = {trace,d,groundplane};
pcb.BoardShape = groundplane;
pcb.FeedDiameter = trace.Width/2;
pcb.FeedLocations = [0,0,1,3;40e-3,15e-3,1,3];
figure;
show(pcb);
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Use sparameters to calculate the s-parameters of the trace and plot it using rfplot function.

spar = sparameters(pcb,linspace(1e9,5e9,51));
figure;
rfplot(spar);
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Point Trace

Use the tracePoint object to create a Point trace. Observe that the tracePoint has TracePoints,
Width, and Corner as properties. Based on the Points, the tracePoint creates the trace and the
Corner property is used to specify the type of corner at each bend i.e. you can specify either sharp,
miter or smooth. Change the TracePoints and set the corner poperty to Miter

trace = tracePoint;
trace.TracePoints = [0 0;5 0;10 5;15 5;20 0;25 0]*1e-3;
trace.Corner = "Miter";
figure;
show(trace);
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Extend the trace

Add an addional L-Shaped trace to the earlier trace so that the feed points are aligned to the same
edge. Add two points in the TracePoints property as shown below. Set the Corner to Miter.

trace.TracePoints = [0 0;5 0;10 5;15 5;20 0;25 0;25 15;0 15]*1e-3;
trace.Corner = "Miter";
figure;
show(trace);
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Create PCB Component

Use the pcbComponent to create the PCB stack for the shape. For creating a PCB stack, use the
trace created as a top layer. The middle layer is a dielectric and the bottom layer is ground plane. Use
the dielectric object to create the FR4 dielectric. Use traceRectangular object to create a
rectangular ground plane. Assign the trace, dielectric(d) and groundplane to the Layers property
on the pcbComponent. Assign the FeedLocations at the ends of the trace and visualize it.

pcb = pcbComponent;
d = dielectric('FR4');
groundplane = traceRectangular('Length', 40e-3,'Width',40e-3,'Center',[40e-3/2,0]);
pcb.Layers = {trace,d,groundplane};
pcb.FeedLocations = [0,0,1,3;0e-3,15e-3,1,3];
pcb.BoardShape = groundplane;
pcb.FeedDiameter = trace.Width/2;
figure;
show(pcb);
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Use current function to plot the current distribution on the trace

figure;
current(pcb,1e9);
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Use charge function to plot the charge on the trace

figure;
charge(pcb,1e9);
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Analyzing High Frequency Currents and Techniques for Routing
PCB Traces

This example shows how to use the RF PCB Toolbox to analyze the surface currents on the trace and
focuses on the routing discipline that needs to be followed while designing the Mixed Signal PCB
layout.

Build Trace

To analyze the currents on the trace, build a trace using traceLine object and visualize it.

trace = traceLine;
trace.StartPoint = [0 -20e-3];
trace.Length = [10 5*sqrt(2) 10 5*sqrt(2) 20 40 50]*1e-3;
trace.Angle  = [0 45 0 -45 0 90 180];
trace.Width  = 3e-3;
trace.Corner = "Sharp";
figure;
show(trace)
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Create PCB Component of Trace

Use the pcbComponent object to create the PCB stack up for the trace. Use the dielectric object
function and create a teflon dielectric. Use the traceRectangular object to create the ground
plane for the PCB. Assign the trace, dielectric, and the groundplane to the Layers property of the
pcbComponent. Visualize the PCB stack using the show function.

pcb = pcbComponent;
d = dielectric('Teflon');
groundplane = traceRectangular('Length', 60e-3,'Width',100e-3,'Center',[60e-3/2,0]);
pcb.Layers = {trace,d,groundplane};
pcb.FeedLocations = [0e-3,-20e-3,1,3;0e-3,20e-3,1,3];
pcb.BoardShape = groundplane;
pcb.FeedDiameter = trace.Width/2;
pcb.ViaDiameter = trace.Width/2;
figure;
show(pcb);
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Surface Currents on PCB Trace and Ground Plane

Electromagnetic simulations for signals of different frequencies are shown here to visualize the paths
in which the currents flow. The forward signal currents for each case are constrained to the trace.
However, the return ground currents can flow anywhere on the ground plane.

Use the current function to plot the current distribution at 100 MHz.

figure;
current(pcb,0.1e9,'scale','log');
title('Current at 100 MHz');

The figure shows that there is a red line between the two feed locations i.e, Source and Load, which
means the current on the ground plane choses the path of least resistance and returns directly from
the source to the load. A small amount of the ground current flows along the signal path (light red),
while even smaller amounts flow in between these two paths as indicated by the blue color of much of
the plane.

As the frequency increases, the return currents on the ground plane flow exactly beneath the trace.

Use the current function to plot the current distribution at 500 MHz.
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figure;
current(pcb,0.5e9,'scale','log');
title('Current at 500 MHz');

This figure shows that the return current on the ground plane flows only along the trace and doesnt
flow between the source and load. As the frequency increases, the return currents on the ground
plane flow exactly beneath the trace and this fact can be seen in the subsequent figures.

Use the current function to plot the current distribution at 2 GHz.

figure;
current(pcb,2e9,'scale','log');
title('Current at 2 GHz');
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This results shows that the high frequency current on the ground plane flows beneath the trace and
the routing of the PCB traces on the board becomes very critical and must be followed carefully to
avoid cross talk with other traces.

Routing with Gap in Ground Plane

For mixed signal PCB layout, seperate the ground plane into analog ground and digital ground to
reduce the interference between these traces. But splitting the ground plane and not following the
routing discipline causes severe problems in the mixed signal PCB design. To understand this, use the
same trace created in the above section but with a slit in the ground plane

Use the pcbComponent object to build the PCB Stack of the trace. Use traceRectangular to build
two rectangular traces and subtract these traces from the ground plane to create the slit in the
ground plane and visualise it.

pcb = pcbComponent;
d = dielectric('Teflon');
groundplane1 = traceRectangular('Length', 60e-3,'Width',100e-3,'Center',[60e-3/2,0]);
slit1 = traceRectangular('Length', 1e-3,'Width',48e-3,'Center',[20e-3,27e-3]);
slit2 = traceRectangular('Length', 1e-3,'Width',50e-3,'Center',[20e-3,-27e-3]);
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groundplane = groundplane1-slit1-slit2;
pcb.Layers  = {trace,d,groundplane};
pcb.FeedLocations = [0e-3,-20e-3,1,3;0e-3,20e-3,1,3];
pcb.BoardShape = groundplane1;
pcb.FeedDiameter = trace.Width/2;
pcb.ViaDiameter = trace.Width/2;
figure;
show(pcb);

The slit in the ground plane is such that the trace above crosses the slit perpendicularly as shown in
the figure.

Use the current function to plot the current distribution at 5 GHz. As there is a slit in the ground
plane the currents cannot return directly beneath the trace and takes a longer route to return
through the small joint where both the ground planes are attached.

figure;
current(pcb,5e9,'scale','log');
title('Current at 5 GHz with Slit Ground Plane');
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The result shows that the return currents take a longer route and might interfere with the
components placed in that area and introduce noise at that component. So even if the ground is
seperated as an analog and digital ground, the routing of the traces is very important to design a PCB
with less crosstalk and noise.
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Introduction to Equal and Unequal Split Wilkinson Power
Splitter

This example shows you how to design, analyze, and compare an equal and unequal Wilkinson
splitter.

A Wilkinson power splitter is a device that is matched at all ports. This splitter is lossless when
excited at the input port and the output ports are isolated. You can also make this splitter to perform
arbitrary power division which is the unequal Wilkinson splitter.

Equal Split Wilkinson with Rectangular Shape

Use the wilkinsonSplitter object to create an equal split Wilkinson splitter. For this case the
reference impedance is 50 Ohms. The split lines have an impedance of 70.7 ohms and the Isolation
Resistor between the two output ports is 100 Ohms. The split lines have the same width and have a
length equal to a quarter wavelength. The port lines have an impedance of 50 Ohms.

splitter = wilkinsonSplitter;
figure;
show(splitter);

The Shape property on the wilkinson splitter is used to create the geometry with rectangular bends
or circular rings. The default shape property is Rectangular which creates split lines with rectangular
bends.

Use the sparameters function to compute the S-parameters and plot it using the rfplot function.
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spar = sparameters(splitter,linspace(1e9,5e9,31));
figure;
rfplot(spar);

The result shows an S11 value of -25 dB at 1.8 GHz. The S21 and S31 are overlapping each other
with a value of -3.1 dB. This overlap indicates an equal power division to the output ports. The
Isolation is also higher than -25 dB at 1.8 GHz. The output ports are matched over the entire
simulated frequency range and S22 and S33 value is higher than -25 dB at 1.8 GHz.

Use the design method to design Wilkinson splitter at 2 GHz and visualize it.

splitter = design(splitter,2e9);
figure;
show(splitter);
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Compute and plot the S-parameters of the 2 GHz splitter.

spar = sparameters(splitter,linspace(1e9,3e9,31));
figure;
rfplot(spar);
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The result shows an S11 value of -30 dB close to the design frequency of 2 GHz. The S21 and S31
overlaps each other indicating an equal power division to output ports. The isolation is also higher
than -30 dB at the design frequency. The output ports are matched over the entire simulated
frequency range and the S22 and S33 value is higher than -20 dB at the design frequency.

Use the current function to plot the current distribution on the surface of the Wilkinson power
splitter.

figure;
current(splitter,2e9);
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Equal Split wilkinson with Circular Shape

Use the Shape property of the Wilkinson to change the splitter shape to Circular.

splitter.Shape = 'Circular';
figure;
show(splitter);
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For a reference impedance of 50 Ohms, the input PortLine and two output PortLines have an
impedances of 50 ohms. Both the SplitLines have the same width and the same impedance of 70.7
ohms. The resistance between the two lines is represented by the 100 ohm load. Since the Shape
property is Circular, the SplitLines are created using an annular ring.

Compute and plot the S-parameters of the splitter.

spar = sparameters(splitter,linspace(1e9,5e9,31));
figure;
rfplot(spar);
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The result shows an S11 value of -25 dB at 2 GHz. The S21 and S31 overlap each other with a value
of -3.1 dB at the resonant frequency. This indicates an equal power division to output ports. The
Isolation is also better than -25 dB at 1.8 GHz. The output ports are matched over the entire
simulated frequency range and the S22 and S33 value is higher than -25 dB at 1.8 GHz.

Design the Wilkinson splitter at 4 GHz.

splitter = design(splitter,4e9);
figure;
show(splitter);
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Compute and plot the S-parameters.

spar = sparameters(splitter,linspace(3e9,5e9,31));
figure;
rfplot(spar);

 Introduction to Equal and Unequal Split Wilkinson Power Splitter

1-113



The result shows an S11 value of -20 dB close to the design frequency of 4 GHz. The S21 and S31
overlap on each other indicating an equal power division to output ports. The Isolation is also better
than -20 dB at the design frequency. The output ports are matched over the entire simulated
frequency range and the S22 and S33 value is -20 dB at the design frequency.

Compute and plot the current distribution on the surface of the splitter.

figure;
current(splitter,4e9);
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Design and Analysis of the Unequal Split wilkinson Power Splitter

The unequal Wilkinson splitter divides the power unequally to the output ports. Because of the
unequal division, the impedance of both the arms of the power splitter and width of the split lines are
different. Two more microstrip lines are used to match the split lines to the reference impedance.
Both the SplitLine and the MatchLine are quarter wavelength long.

Use the wilkinsonSplitterUnequal object to create a Wilkinson splitter and use the show function to
visualize it.

splitter = wilkinsonSplitterUnequal;
figure;
show(splitter);
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Design the Wilkinson splitter at 2 GHz and specify the power ratio between the ports as 2.

splitter = design(splitter,2e9,'PowerRatio',2);
figure;
show(splitter);
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Compute and plot the S-parameters.

spar = sparameters(splitter,linspace(1e9,3e9,31));
figure;
rfplot(spar);
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The result shows an S11 value higher than -30 dB close to the design frequency of 2 GHz. The S21
value is close to the expected value of -1.76 dB and S31 value is close to the expected value of -4.77
dB. These values indicate an unequal division to output ports. The Isolation is also higher than -30 dB
at the design frequency. The output ports are matched over the entire simulated frequency range and
S22 and S33 value is better than -20 dB at the design frequency.

Compute and plot the current distribution on the surface of the Wilkinson power splitter.

figure;
current(splitter,2e9);
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Change the PowerRatio to 4 in the design method.

splitter = design(splitter,2.5e9,'PowerRatio',4);
figure;
show(splitter);
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Computer and plot the S-parameters.

spar = sparameters(splitter,linspace(1e9,4e9,31));
figure;
rfplot(spar);
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The result shows an S11 value higher than -30 dB close to the design frequency of 2.5 GHz. The S21
value is close to the expected value of -0.97 dB and S31 value is close to the expected value of -6.99
dB. These values indicate an unequal division to output ports with the power ratio of 4. The Isolation
is also higher than -20 dB at the design frequency. The output ports are matched over the entire
simulated frequency range and S22 and S33 value is better than -15 dB at the design frequency.

Compute and plot current distribution on the surface of the Wilkinson power splitter.

figure;
current(splitter,2.5e9);
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Introduction to 4-Port Couplers
This example shows how to design and analyze 4-Port Couplers.

4-Port couplers have a through port, coupled port, and an isolated port. For the equal split couplers,
power is evenly split between the through port and the coupled port and the ideal coupling factor is 3
dB. No power is coupled to the isolated port. In this example, you will design and analyze a
Branchline coupler and Ratrace coupler.

Design and Analyze Branchline Coupler

The Branchline coupler is a 3-dB coupler and divides power equally between the through and coupled
arms. It is also called Quadrature Hybrid because of the 90 degree phase difference in the outputs
from the through and coupler arms. With all ports matched, power entering port 1 is evenly divided
between ports 2 and 4, with a 90 degree phase shift between the outputs. No power is coupled to the
Port 3 (the isolated port).

Use the object couplerBranchline to create a Branchline coupler and visualize it.

coupler = couplerBranchline;
figure;
show(coupler);
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The Height property controls the substrate thickness for the RF PCB Catalog elements. Changing
the Height property changes the substrate thickness.

Change the Height property of the Branchline coupler to 0.508 mm . Use the design function to
design the Branchline coupler at 3 GHz and visualize it.

coupler.Height = 0.508e-3;
coupler = design(coupler,3e9);
figure;
show(coupler);
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Use the sparameters function to calculate the S-Parameters and plot it using the rfplot function.

spar = sparameters(coupler,linspace(1e9,5e9,31));
figure
rfplot(spar)
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As there are 16 curves in the result, let us analyze the result in three different parts.

Plot Return Loss Values at All Ports

figure
rfplot(spar,'diag')
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The result shows that all the ports are a good match at 3 GHz and the value of S11, S22, S33, and
S44 is close to -30 dB.

Plot S-Parameters When Input is Applied at Port 1

Analyze the values of S21, S31, and S41 to understand the behavior of Branchline coupler when input
is applied to port 1.

figure
rfplot(spar,2:4,1)
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The result shows that the power is equally divided between Port 2 and Port 4. Port 3 is isolated.

Plot the phase of the S21 and S41 to understand the phase different between the output ports.

figure, rfplot(spar,[2 4],1,'angle')
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The result shows that the phase difference between the output ports is close to 90 degrees at the
design frequency. Hence, the outputs at Port 2 and Port 4 is out of phase by 90 degrees when the
input is applied to Port 1.

Plot S-Parameters When Input is Applied at Port 3

Analyze the values of S13, S23, and S43 to understand the behavior of Branchline coupler when input
is applied to Port 3.

figure
rfplot(spar,[2 4 1],3)
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The result shows that the power is equally divided to Port 2 and Port 4. Port 1 is isolated.

Plot the phase of the S23 and S43 to understand the phase different between the output ports.

figure
rfplot(spar,[2 4],3,'angle')
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The result shows that the phase difference between the output ports is close to 90 degrees at the
design frequency of 3 GHz. Hence, when the input is applied to Port 3, the output at Port 2 and Port 4
is out of phase by 90 degree.

Use the current method to visualize the current distribution on the Branchline coupler

figure
current(coupler,3e9)
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Design and Analyze Ratrace Coupler

The Ratrace Coupler is a 4-port coupler and is also called a 180 deg ring hybrid as the output ports
exhibit a phase shift of 180 deg. With reference to the 180 deg hybrid shown below, a signal applied
at Port 3 will be evenly split into two in-phase components at Ports 2 and 4. Port 1 is isolated. If the
input is applied at Port 1, signal is equally split into two components with a 180 deg phase difference
at Ports 2 and 4. Port 3 is isolated. When operated as a combiner, with input signals applied at Ports 2
and 4, the sum of the inputs forms at Port 3, while the difference forms at Port 1. Hence Port 3 and 1
are referred to as the sum and difference ports respectively.
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Use the couplerRatrace object to create a Ratrace coupler and visualize it.

coupler = couplerRatrace;
figure
show(coupler)
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Change the Height property for the Ratrace coupler. Use the design function to design the Ratrace
coupler at 3 GHz and visualize it.

coupler.Height = 0.762e-3;
coupler = design(coupler,3e9);
figure
show(coupler)
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Use the sparameters function to calculate the S-Parameters for the Ratrace coupler and plot it
using the rfplot function.

spar = sparameters(coupler,linspace(1e9,5e9,31));
figure
rfplot(spar)
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As there are 16 curves in the result, let us analyze the result in three different parts.

Plot Return Loss Values at All Ports

figure
rfplot(spar,'diag')
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The result shows that all the ports are a good match at 3 GHz and the values of S11, S22, S33, and
S44 is higher than -30 dB.

Plot S-Parameters When Input is Applied at Port 1

Analyze the values of S21, S31, and S41 to understand the behavior of Ratrace coupler when input is
applied to port 1.

figure
rfplot(spar,2:4,1)
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The result shows that the power is equally divided between Port 2 and Port 4. Port 3 is isolated when
the input is applied to Port 1.

Plot the phase of S21 and S41 to understand the phase difference between the output ports.

figure
rfplot(spar,[2 4],1,'angle')
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The result shows that the phase difference between the output ports is close to 180 degrees at the
design frequency. Hence, when the input is applied at Port 1, the output at Port 2 and Port 4 is out of
phase by 180 degrees.

Plot S-Parameters When Input is Applied at Port 3

Analyze the values of S23, S43, and S13 to understand the behavior of Ratrace coupler when input is
applied to Port 3.

figure
rfplot(spar,[2 4 1],3)
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The result shows that the power is equally divided between Port 2 and Port 4. Port 1 is isolated when
the input is applied to Port 3.

Plot the phase of the S23 and S43 to understand the phase difference between the output ports.

figure
rfplot(spar,[2 4],3,'angle')
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The result shows that the phase difference between the output ports is close to 0 degrees at the
design frequency of 3 GHz. Hence, when the input is applied at Port 3, the output at Port 2 and Port 4
is in phase.

Use the current method to visualize the current distribution on the Ratrace coupler

figure
current(coupler,3e9)
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Design Two-Stage Low Noise Amplifier Using Microstrip
Transmission Line Matching Network

This example shows how to use the RF PCB Toolbox™ shapes and the pcbComponent object
functionality to design a two-stage low noise amplifier (LNA) for a wireless local area network
(WLAN) with an input and output matching network (MNW) to maximize the power delivered to the
50 ohm load.

Designing an input and output MNW is an important part of an amplifier design. The amplifier in this
example has high gain and low noise. This example uses the traceTee RF PCB shape to create the
input and output matching network.

The diagram shows the matching network topology used for both the input and output matching
networks. The lengths and widths given in the paper[1] are for the lines TL2 and TL1 for Input MNW
and TL3 and TL4 for the output MNW. Additional Port lines will be added as shown in the figure
which will have same length as the series transmission lines(TL2 and TL3) so that we can connect the
ports and analyze the structure. As the MNW forms the tee shape at both input and output, you can
use the traceTee shape for creating the MNWs.

Define Microstrip Transmission Line Parameters

The microstrip transmission line parameters are chosen as follows.

Physical Height of conductor or dielectric thickness — 1.524 mm

Relative permittivity of dielectric — 3.48

Loss angle tangent of dielectric — 0.0037

Physical thickness of microstrip transmission line — 3.5 um

Create the Variables

The variables below are for creating the input and output MNWs. The Length_Line1 and
Length_Line2 store the length of the series matching line and the length of the portline. The paper
gives the TL2 as 14.7 mm and hence the portline at input also is taken as 14.7 mm. Hence the
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Length_Line1 becomes 29.4 mm. At the output MNW, the line TL3 is 22.5 mm and hence the
portline at the output is also 22.5 mm. Hence Length_Line2 becomes 45 mm. The stub lengths
Length_Stub1 and Length_Stub2 are also taken from the paper[1].

Length_Line1 = 29.4e-3; % Length of the Input Matching Network
Length_Stub1 = 8.9e-3;  % Length of the Stub

Length_Line2 = 45e-3;   % Length of the Output Matching Network
Length_Stub2 = 5.66e-3; % Length of the Stub
Width_Line   = 3.5e-3;  % Width of the line

EpsilonR     = 3.48;    % Dielectric EpsilonR
Height       = 1.524e-3;% Height of the Substrate
LossTangent  = 0.0037;  % Loss Tangent of the Substrate

fmin   = 2e9;
fmax   = 3e9;
points = 50;
freq   = linspace(fmin,fmax,points);

Use the nport function from RF Toolbox to read the sparameters of the amplifier from an s2p file for
the amplifier and store it in the variables Amp1 and Amp2.

Amp1 = nport('f551432p.s2p');
Amp2 = nport('f551432p.s2p');

Design Input Matching Network Using tracetee shape

The input matching network consists of one shunt stub and one series microstrip transmission line.
The dimensions of the series transmission line is Length_Line1 and the length of the stub is
Length_Stub1. The width of the lines is Width_Line.

InputMatching = traceTee('Length',[Length_Line1 Length_Stub1],'Width',[Width_Line Width_Line]);
show(InputMatching);
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Gnd1 = antenna.Rectangle('Length',Length_Line1,'Width',30e-3);
show(Gnd1);
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The output figures show the tee shaped matching network and the ground plane for creating the PCB
stack.

Design Output Matching Network Using traceTee shape

The output matching network also consists of one shunt stub and one series microstrip transmission
line. The dimensions of the series transmission line is Length_Line2 and the length of the stub is
Length_Stub2. The width of the lines is Width_Line.

OutputMatching = traceTee('Length',[Length_Line2 Length_Stub2],'Width',[Width_Line Width_Line]);
figure;
show(OutputMatching);
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Gnd2 = antenna.Rectangle('Length',Length_Line2,'Width',30e-3);
figure;
show(Gnd2);
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The output figures show the tee shaped matching network and the ground plane for creating the PCB
stack up.

Create pcbComponent for Input and Output Matching Networks

The pcbComponent method creates the PCB stack for any of the RF PCB shapes and it assigns the
layers for dielectric, ground plane and feeds at the open ends of the shape.

Use the pcbComponent method to create the PCB stack of the InputMatching traceTee shape.
Use the show method to visualize the PCB stack up of the traceTee. Notice that the pcbComponent
method assigns the InputMatching shape, dielectric, ground plane to Layers property of
pcbComponent and assigns FeedLocations at three open ends of the shape.

InputMatchingNw = pcbComponent(InputMatching);
figure;
show(InputMatchingNw);
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The output shows the top and the bottom metal with the dielectric in the middle and ports at all the
open ends of the shape. However the stub needs to be an open circuit. For this you can remove the
feed at the third port, increase the ground plane width and change the dielectric values as per the
paper[1] using the below code.

d=dielectric('Name',{'Teflon'},'EpsilonR',EpsilonR,'LossTangent',LossTangent,'Thickness',Height);
InputMatchingNw.Layers(2:3)          = {d,Gnd1};
InputMatchingNw.BoardShape           = Gnd1;
InputMatchingNw.FeedLocations(3,:)   = [];
InputMatchingNw.BoardThickness       = Height;
figure;
show(InputMatchingNw);
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Observe the changes in the PCB stack up after removal of the feed and increasing the ground plane
width.

Use the sparameters function to calculate the s-parameters of the input matching network.

s_in=sparameters(InputMatchingNw,freq);
figure;
rfplot(s_in);
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rfwrite(s_in,'s_in.s2p');

Perform the same steps for the output matching network and build the required PCB stack.

OutputMatchingNw                      = pcbComponent(OutputMatching);
OutputMatchingNw.Layers(2:3)          = {d Gnd2};
OutputMatchingNw.BoardShape           = Gnd2;
OutputMatchingNw.FeedLocations(3,:)   = [];
OutputMatchingNw.BoardThickness       = Height;
figure;
show(OutputMatchingNw);
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The output shows the top and the bottom metal with dielectric in the middle layer. Use the
sparameters function to calculate the s-parameters of the output matching network.

s_out=sparameters(OutputMatchingNw,freq);
figure;
rfplot(s_out);
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rfwrite(s_out,'s_out.s2p');

Use nport function from RF Toolbox to import the s-parameter files for the input and output
matching networks.

IMNW = nport('s_in.s2p');
OMNW = nport('s_out.s2p');

Cascaded Amplifier S-Parameters

Use the circuit function to cascade the two amplifiers and use the sparameters function to
calculate the s-parameters and plot it using the rfplot method.

casamp = circuit([Amp2,clone(Amp2)],'amplifiers');
S2 = sparameters(casamp,freq);
figure;
rfplot(S2);
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The plot shows that the S21 is around 35 dB but the S11 and S22 values are around -5 dB mark which
is not sufficient as the expected values are -10 dB. So the MNWs that are designed will improve the
S11 and S22 values.

Cascade Input and Output Matching Networks with Two Amplifiers

Use the circuit function to cascade the Input and output matching networks' s-parameters and the
two amplifiers and plot the s-parameters. The S11 and S22 are below -10 dB indicating a proper
matching at the input and output ports of the amplifier.

casamp1 = circuit([IMNW ,clone(Amp1),clone(Amp2), OMNW],'amplifiersWithMatching');
S3 = sparameters(casamp1,freq);
figure;
rfplot(S3);
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The plot shows that the S11 and S22 are below -10 dB and hence the reflected power is reduced at
Port1 and Port2.

Compare Input Reflection Coefficients of Two-Stage LNA

To verify the simultaneous conjugate match at the input of the amplifier, plot the input reflection
coefficients in dB for the amplifier circuit with and without a matching network. Plot the s-parameters
with and without the matching networks over the frequency range of 2 – 3 GHz.

figure;
rfplot(S2,1,1);
hold on;
rfplot(S3,1,1);
legend('|S11| of Two-Stage LNA Without MNW','|S11| of Two-Stage LNA with MNW');
title('Input Reflection Coefficients of Two-Stage LNA');
grid on;
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The input return loss for the two-stage LNA with the input MNW is around –12 dB.

Compare Output Reflection Coefficients of Two-Stage LNA

To verify the simultaneous conjugate match at the output of the amplifier, plot output reflection
coefficients in dB for both the two-stage LNA with and without a MNW.

figure;
rfplot(S2,2,2);
hold on;
rfplot(S3,2,2);
legend('|S22| of Without MNW','|S22| of With MNW');
title('Output Reflection Coefficients of Two-Stage LNA');
grid on;
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The calculated output return loss for the two-stage LNA with the output MNW is around -10 dB.

This matching network design can be used for matching any input impedance and convert that
impedance to 50 ohm so that you get good matching at input and output.

Reference

[1] Maruddani, B, M Ma’sum, E Sandi, Y Taryana, T Daniati, and W Dara. “Design of Two Stage Low
Noise Amplifier at 2.4 - 2.5 GHz Frequency Using Microstrip Line Matching Network Method.”
Journal of Physics: Conference Series 1402 (December 2019): 044031.
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Design and Analyze Compact UWB Low Pass Filter Using
pcbComponent

This example shows how to design and analyze a compact low pass ultra-wide band (UWB) filter
based on a U-shaped complementary split ring resonator using the pcbComponent object. The filter is
designed to have very low insertion loss over a wide band of frequency from low 0.1 GHz to 10.8 GHz.
The design of the filter is taken from the reference [1].

Design and Analyze UWB Low Pass Filter

This compact filter design employs U-shaped complementary split ring resonator (U-CSRR). U-CSRR
is a uniplanar configuration of complementary split ring resonator (CSRR) as described in [1]. This
structure has an advantage of simpler fabrication as it is formed on the top metal layer. The U-CSRR
is formed using two concentric split square rings of outer length L1, inner length L2 as shown in
Figure (a) below. This U-CSRR element is created on top metal layer of hosting transmission line. The
equivalent circuit of the single U-CSRR cell shown in Figure (b) is represented by a parallel resonant
circuit with inductance Lc and capacitance Cc. The inductance LR and capacitance CR represent the
inductance and capacitance of the host transmission. The U-CSRR particle is electrically coupled to
the host transmission line.

The equivalent circuit of the U-CSRR particle suggests that at low frequency, the impedance of the
parallel tank circuit is small and the circuit has passband characteristics. Figure (a) shows the
schematic diagram of such a filter employing two U-CSRR cells in microstrip [1] representing various
feature dimensions. As in [1], the choice of two U-CSRR particles in filter design is to have a compact
size and ensure high attenuation in stop band.

Use the traceRectangular object to create feeding transmission line ZA and rectangular unit cell
Cell_A. Perform the Boolean add operation for the microstrip shapes ZA, Cell_A and create
LeftSection.

% Set variables for ground plane
gndL = 18e-3;
gndW = 7e-3;
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% Set variables for feeding transmission line
ZA_Width = 4e-3;
ZA_Length = 4e-3;

% Define unit cell length
Cell_Length = 5e-3;

% Create feeding microstrip line
ZA = traceRectangular("Length",ZA_Length,"Width",ZA_Width,...
    "Center",[-ZA_Length/2-Cell_Length 0]);

% Create rectangular unit cell
Cell_A = traceRectangular("Length",Cell_Length,"Width",Cell_Length,...
    "Center",[-Cell_Length/2 0]);

% Join feeding line and rectangular unit cell
LeftSection = ZA + Cell_A;

Use traceLine object to create shapes s1, s2, s3, s4. Use traceRectangular object to create
shape s5.

Subtract shapes s1,s2,s3,s4, and s5 from LeftSection. This operation creates various slots
seen on U-CSRR particle. Visualize LeftSection using the show

% Create shapes for various slots 
s1 = traceLine('StartPoint',[-Cell_Length/2-0.2e-3  -1.9e-3],...
    'Angle',[-180 -270 0],'Length',[1.75e-3 3.8e-3 1.75e-3],'Width',0.2e-3);

s2 = traceLine('StartPoint',[-Cell_Length/2+0.2e-3  -1.9e-3],...
    'Angle',[0 90 180],'Length',[1.75e-3 3.8e-3 1.75e-3],'Width',0.2e-3);

s3 = traceLine('StartPoint',[-Cell_Length/2-1.2e-3  -0.2e-3],...
    'Angle',[-90 0 90],'Length',[0.8e-3 2.4e-3 0.8e-3],'Width',0.2e-3);

s4 = traceLine('StartPoint',[-Cell_Length/2-1.2e-3   0.2e-3],...
    'Angle',[90 0 -90],'Length',[0.8e-3 2.4e-3 0.8e-3],'Width',0.2e-3);

s5 = traceRectangular("Length",0.2e-3,"Width",1.8e-3,...
    "Center",[-Cell_Length/2 0]);

% Create slots of U-CSRR on hosted micrsotrip line
LeftSection = LeftSection -s1 -s2 -s3 -s4 -s5;
figure; 
show(LeftSection);
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Use the copy, rotateZ, and rotateX methods on the LeftSection object to create a
RightSection. This creates right portion of filter having another U-CSRR hosted transmission line.
Visualize RightSection using show function.

RightSection = copy(LeftSection);
RightSection = rotateZ(RightSection,180);
RightSection = rotateX(RightSection,180);
figure; 
show(RightSection);
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Perform theBoolean add operation for the shapes LeftSection, RightSection to create a filter.
Visualize the filter.

filter = LeftSection + RightSection;
show(filter);
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Define the substrate parameters and create a dielectric to use in the pcbComponent of the designed
filter. Create a groundplane using the traceRectangular shape. Use the pcbComponent to create
a filter PCB. Assign the dielectric and ground plane to the Layers property on pcbComponent.
Assign the FeedLocations to the edge of the feed ports. Set the BoardThickness to 1.52 mm on
the pcbComponent and visualize the filter. The below code performs these operations and creates the
filter PCB.

% Define Substrate and its thickness
substrate = dielectric("RO4730JXR");
substrate.Thickness = 1.52e-3;

% Define bottom ground plane
ground = traceRectangular("Length",gndL,"Width",gndW,...
   "Center",[0,0]);

Use pcbComponent to create a filter pcb

pcb = pcbComponent;
pcb.BoardShape = ground;
pcb.BoardThickness = 1.52e-3;
pcb.Layers ={filter,substrate,ground};
pcb.FeedDiameter = ZA_Width/2;
pcb.FeedLocations = [-gndL/2 0 1 3;gndL/2 0 1 3];
figure; 
show(pcb);
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Use the mesh function to have fine meshing and set MaxEdgeLength to 1mm.

figure;
mesh(pcb,'MaxEdgeLength',1e-3);
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Use the sparameters function to calculate the S-parameters for the low pass filter and plot it using
the rfplot function.

spar = sparameters(pcb,linspace(0.1e9,15e9,30));
figure;
rfplot(spar);
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As there are four curves in the result, let us analyze the results.

Plot S-Parameters

Analyze the values of S21, and S11 to understand the behavior of low pass filter.

figure;
rfplot(spar,[1 2],1);
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The result shows that the filter has S21 values close to 0 dB and S11 values less than -15 dB between
wide band of frequencies f1 = 0.1 GHz and f2 = 10.0 GHz. The designed filter therefore has ultra-
wide passband response. For frequencies greater than 10.8 GHz, S21 values are less than -10 dB
indicating stopband response.

Use the charge function to visualize the charge distribution on the metal surface and dielectric of
low pass filter.

figure;
charge(pcb,5e9);
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figure;
charge(pcb,5e9,'dielectric');
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Use the current function to visualize the current distribution on the metal surface and volume
polarization currents on dielectric of low pass filter.

figure;
current(pcb,5e9);
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figure;
current(pcb,5e9,'dielectric');

 Design and Analyze Compact UWB Low Pass Filter Using pcbComponent

1-169



References

[1] Abdalla, M. A., G. Arafa, and M. Saad, “Compact UWB LPF based on uni-planar metamaterial
complementary split ring resonator,” Proceedings of 10th International Congress on Advanced
Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), 10–12, Chania, Greece,
Sep. 2016

1 RF PCB Examples

1-170



Design and Analyze Band Stop Filter using pcbComponent
This example shows you how to design and analyze band stop filter using the pcbComponent object.
Design the band stop filter with a fractional bandwidth (FBW) of 1.0 at a midband frequency f0 of 2.5
GHz for the band-edge frequencies of f1 = 1.25 GHz and f2 = 3.75 GHz as defined in Figure 6.11b of
reference [1].

Design Band Stop Filter

Design the microstrip band stop filter based on a three-pole (n = 3) Chebyshev lowpass prototype
with 0.05 dB passband ripple. The element values of the lowpass prototype are

• g0 = g4 = 1.0
• g1 = g3 = 0.8794
• g2 = 1.1132

Using the design equations Eq.(6.30) given in refrence [1] on page no. 182 for n = 3 and Z0 = 50 Ω
as , you can obtain

• ZA = ZB = 50 ohm
• Z1 = Z3 = 106.8544 ohm
• Z12 = Z23 = 93.9712 ohm
• Z2 = 44.9169 ohm

Choose a commercial substrate (RT/D 6006) with a relative dielectric constant of 6.15 and
thickness of 1.27 mm. Calculate the microstrip widths using the microstrip design equations given in
Chapter 4 of reference [1]. The figure shows the schematic diagram of the microstrip band stop filter
[1] representing various feature dimensions.
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Use the traceRectangular object to create ZA, Z1, Z12. Perform a Boolean add operation for the
microstrip shapes ZA, Z1, Z12 and create a LeftSection object. Visualize the LeftSection using
show function.

ZA_Width = 1.85e-3;
ZA_Length = 7e-3;
Z1_Length = 0.3e-3;
Z1_Width = 15.15e-3;
Z12_Length = 14.05e-3;
Z12_Width = 0.45e-3;
Z2_Length = 2.3e-3;
Z2_Width = 14.85e-3;
gndL = 45e-3;
gndW = 30e-3;

ZA = traceRectangular(Length = ZA_Length+Z1_Length/2,Width = ZA_Width,...
    Center = [-gndL/2+ZA_Length/2+Z1_Length/4 0]);
Z1 = traceRectangular(Length = Z1_Length,Width = Z1_Width+ZA_Width/2,...
    Center = [-gndL/2+ZA_Length+Z1_Length/2 (Z1_Width/2+ZA_Width/4)]);
Z12 = traceRectangular(Length = Z12_Length+Z1_Length,Width = Z12_Width,...
    Center = [-gndL/2+ZA_Length+Z1_Length/2+Z12_Length/2 0]);
LeftSection = ZA+Z1+Z12;
figure; 
show(LeftSection);
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Use the copy, rotateZ and rotateX functions on LeftSection object to create a RightSection.
Visualize the RightSection object.

RightSection = copy(LeftSection);
RightSection = rotateZ(RightSection,180);
RightSection = rotateX(RightSection,180);
figure; 
show(RightSection);
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Perform a Boolean add operation for the shapes LeftSection and RightSection to create a
combineSection object. Use the traceRectangular object to create centerArm Z2. Perform a
Boolean add operation for the shapes combineSection, Z2, and create a filter object. Visualize
the filter object.

combineSection = LeftSection + RightSection;
Z2 = traceRectangular(Length = Z2_Length,Width = Z2_Width,...
    Center = [0 -Z12_Width/2+Z2_Width/2]);
filter = combineSection + Z2;
show(filter);
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Define the substrate parameters and create a dielectric to use in the pcbComponent of the designed
filter. Create a groundplane using the traceRectangular shape.

substrate = dielectric(EpsilonR = 6.15,LossTangent = 0.0027,...
    Name = "custom",Thickness = 1.27e-3);

ground = traceRectangular(Length = gndL,Width = gndW,...
    Center = [0,6e-3]);

Create PCB Filter Using pcbComponent

Use the pcbComponent to create a filter PCB. Assign the dielectric and ground plane to the Layers
property of the pcbComponent. Assign the FeedLocations to the edge of the feed ports. Set the
BoardThickness to 1.27 mm on the pcbComponent and visualize the filter.

pcb = pcbComponent;
pcb.BoardShape = ground;
pcb.BoardThickness = 1.27e-3;
pcb.Layers ={filter,substrate,ground};
pcb.FeedDiameter = ZA_Width/2;
pcb.FeedLocations = [-gndL/2 0 1 3;gndL/2 0 1 3];
figure; 
show(pcb);
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Plot and Analyze the S-Parameters

Use the sparameters function to calculate the s-parameters for the band stop filter and plot it using
the rfplot function.

spar = sparameters(pcb,linspace(0.1e9,6e9,50));
figure;
rfplot(spar);
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As there are four curves in the result, let us analyze the results.

Analyze the values of S12, and S11 to understand the behavior of band stop filter.

figure
rfplot(spar,1,1:2)
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The result shows that the filter has center frequency f0 = 2.5 GHz for the band-edge frequencies f1 =
1.75 GHz and f2 = 3.4 GHz. The S11 values are close to 0 dB and S12 values are less than -10 dB
between frequencies f1 = 1.4 GHz and f2 = 3.4 GHz. The designed filter therefore has stopband
response. The shift in band-edge frequencies f1 and f2 might be due to use of different full wave
numerical solver used for EM simulation.

Visualize Charge and Current Distribution

Use the charge function to visualize the charge distribution on the metal surface and dielectric of
band stop filter.

figure;
charge(pcb,2.4e9);
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figure;
charge(pcb,2.4e9,'dielectric');
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Use the current function to visualize the current distribution on the metal surface and the volume
polarization currents on dielectric of band stop filter

figure;
current(pcb,2.4e9);
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figure;
current(pcb,2.4e9,'dielectric');
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Design and Analyze High Pass Filter using pcbComponent
This example shows how to design and analyze high pass filter using the pcbComponent object. A
microstrip high pass filter is designed based on a three-pole (n = 3) Chebyshev high pass prototype
with 0.1 dB passband ripple and cut-off frequency fc = 1.5 GHz.

Design and Analyze High Pass Filter

The element values of the corresponding low pass Chebyshev prototype are taken from Table 3.2 of
reference [1]

• g0 = g4 = 1.0
• g1 = g3 = 1.0316
• g2 = 1.1474

Using the design equations Eqs. (6.2) and (6.3) given in reference [1] for n = 3 and Z0 = 50 ohm
terminations, we can obtain quasi-lumped circuit elements values as

• C1 = C3 = 2.0571 pF
• L2 = 4.6236 nH

A schematic diagram of such a high pass filter taken from fig 6.2 of reference [1] representing
various feature dimensions is shown below. It is seen that the series capacitors C1 and C3 are realized
by identical interdigital capacitors, while the shunt inductor L2 is realized by a short-circuited stub. A
commercial substrate (RT/D 5880) having a relative dielectric constant of 2.2 and thickness of 1.57
mm is chosen for this microstrip filter realization. The dimensions of the interdigital capacitors, such
as the finger length, width, spacing between fingers, and number of the fingers are given in the fig
6.2 of reference [1]. The procedure to calculate the dimensions of interdigital capacitor and stub
inductor is discussed in the section 6.1.1 of reference [1]. A closed-form design formulation for
interdigital capacitor and alternatively full-wave EM simulations are used to extract desired values of
lumped circult capacitance for different feature dimensions.
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Use the interdigitalCapacitor object and change its properties as per given values in reference
[1] to create interdigited fingers. Visualize created object using show

idc = interdigitalCapacitor;
idc.NumFingers = 10;
idc.FingerLength = 10e-3;
idc.FingerWidth = 0.3e-3;
idc.FingerSpacing = 0.2e-3;
idc.FingerEdgeGap = 0.2e-3;
idc.GroundPlaneWidth = 5e-3;
idc.TerminalStripWidth = 0.1e-3;
idc.PortLineLength = 0.1e-3;
idc.PortLineWidth = 4.8e-3;
figure; 
show(idc);
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Use the pcbComponent on idc object to create a capacitor cap1. Visualize cap1 using show

pcb = pcbComponent(idc);
cap1 = pcb.Layers{1};
figure;
show(cap1);
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Use the copy, rotateZ, rotateX and translate operation methods on capacitor cap1 object to
create capacior cap2. Visualize cap2 using show

cap2 = copy(cap1);
cap2 = rotateZ(cap2,180);
cap2 = rotateX(cap2,180);
cap2 = translate(cap2,[-6.2e-3 0 0]);
cap1 = translate(cap1,[6.2e-3 0 0]);
figure;
show(cap2);
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Use the traceRectangular object to create both feeding ports port1, port2 and short circuited
stub centerArm. Perform a Boolean add operation for the shapes port1, cap2, centerArm, cap1
and port2 to create filter. Visualize filter using show

portW = 4.9e-3;
portL = 3.6e-3;
centerL = 2e-3;
centerW = 9.9e-3;
port1 = traceRectangular(Length = portL,Width = portW,Center = [-11.4e-3-portL/2 -0.05e-3]);
port2 = traceRectangular(Length = portL,Width = portW,Center = [11.4e-3+portL/2 -0.05e-3]);

centerArm = traceRectangular(Length = centerL,Width = centerW,Center = [0 -2.55e-3]); 
filter = port1 + cap2 + centerArm + cap1 + port2;
figure;
show(filter);
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Define the substrate parameters and create a dielectric to use in the pcbComponent of the designed
filter. Create a groundplane using the traceRectangular shape.

Use the pcbComponent to create a filter PCB. Assign the dielectric and ground plane to the Layers
property on pcbComponent. Assign the FeedLocations to the edge of the feed ports. Assign
ViaLocations at the edge of stub centerArm. Set the BoardThickness to 1.57 mm on the
pcbComponent and visualize the filter. The below code performs these operations and creates the
filter pcb object.

substrate = dielectric(EpsilonR = 2.2, LossTangent = 0.0009,...
    Name = "custom", Thickness = 1.57e-3);
gndL = 30e-3;
gndW = 25e-3;
ground = traceRectangular(Length = gndL, Width = gndW,...
    Center = [0,-4e-3]);

pcb = pcbComponent;
pcb.BoardShape = ground;
pcb.BoardThickness = 1.57e-3;
pcb.Layers ={filter,substrate,ground};
pcb.FeedDiameter = portW/2;
pcb.FeedLocations = [-gndL/2 0 1 3;gndL/2 0 1 3];
pcb.ViaDiameter = centerL;
pcb.ViaLocations = [0 -6.5e-3 1 3];
figure;
show(pcb);
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Use the sparameters method to calculate the S-parameters for the high pass filter and plot it using
the rfplot function.

spar = sparameters(pcb,linspace(0.1e9,3.5e9,40));
figure;
rfplot(spar);
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As there are four curves in the result, let us analyze the results.

Plot S-Parameters

Analyze the values of S11, and S12 to understand the behavior of high pass filter.

figure;
rfplot(spar,1,1);
hold on;
rfplot(spar,1,2);
hold on;
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The result shows that the filter has -3 dB cut-off frequency fc = 1.8 GHz . The S12 values are greater
than -3 dB and S11 values are less than -10 dB above -3 dB cut-off frequency 1.8 GHz. The designed
filter therefore has high pass response and em simulated results matches closely with reference. The
0.3 GHz shift in -3 dB cut-off frequency might be due to use of different numerical solver.

Use the charge method to visualize the charge distribution on the metal surface and dielectric of
high pass filter

figure;
charge(pcb,3e9);
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figure;
charge(pcb,3e9,'dielectric');
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Use the current method to visualize the current distribution on the metal surface and volume
polarization currents on dielectric of high pass filter

figure;
current(pcb,3e9);
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figure;
current(pcb,3e9,'dielectric');
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Design of Quarter-Wave Transformer for Impedance Matching
Applications

This example shows how to design the Quarter-wave transformer for impedance matching
applications by using the pcbComponent, microstripLine, and traceRectangular object in
the RF PCB Toolbox.

Quarter-wave transformer is a simple and useful circuit for matching the real impedance of a
terminating load (ZL) to the characteristic impedance of the feeding transmission line (Z0) as
depicted in the given figure. The characteristic impedance of the quarter-wave transformer is
calculated as Z1 = Z0 ZL [1]. This example is to design a single section quarter-wave transformer to
match the100 Ω load to a 50 Ω transmission line at an operating frequency of 2 GHz. The calculated
characteristic impedance of the quarter-wave transformer Z1is 70 . 71 Ω.

Design of Single Section Quarter-Wave Transformer

Use the design function on the microstripLine object to create the 50 Ω input transmission line
and70 . 71 Ω quarter-wave transformer's Length and Width dimension for the operating frequency
of 2 GHz. The default substrate for microstripLine is Teflon with thickness of 1 . 6 mm.

freq = 2e9;
m50 = design(microstripLine,freq,Z0=50,LineLength=0.05); % input transmission line
m70 = design(microstripLine,freq,Z0=70.71,LineLength=0.25); % section 1

Use the traceRectangular object to create the groundplane, input transmission line, and quarter-
wave transmission line shapes.

% ground plane dimension
gndL = 2*m50.Length+m70.Length;
gndW = 5*m50.Width;

ground = traceRectangular("Length",gndL,"Width",gndW);
% input transmission line
Z0 = traceRectangular("Length",m50.Length,"Width",m50.Width,...
    "Center",[-gndL/2+m50.Length/2 0]);
% First section Quarter-wave transformer
Z1 = traceRectangular("Length",m70.Length,"Width",m70.Width,"Center",...
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    [-gndL/2+m50.Length+m70.Length/2 0]);

qline = Z0 + Z1;

Use the pcbComponent to create the quarter-wave transformer and use the lumpedElement for the
terminating load of 100 Ω and place it at the end of the quarter-wave transformer and use a via to
connect the load to ground.

pcb =pcbComponent;
pcb.BoardShape = ground;
pcb.BoardThickness = m50.Height;
pcb.Layers = {qline,m50.Substrate,ground};
pcb.FeedDiameter = m50.Width/2;
pcb.FeedLocations = [-gndL/2 0 1 3];
pcb.ViaLocations = [-gndL/2+m50.Length+m70.Length,0,1,3];
pcb.ViaDiameter = m70.Width/2;
% Load
ZL = lumpedElement;
ZL.Impedance = 100;
ZL.Location = [-gndL/2+m50.Length+m70.Length,0,pcb.BoardThickness];
pcb.Load = ZL;
% show the single section quarter-wave transformer
figure;show(pcb)

Use the sparameters function to calculate the S parameters and plot it using the rfplot function.

sparams = sparameters(pcb,linspace(100e6,8e9,51));
figure; rfplot(sparams)
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It is observed from the S11 values that the impedance is perfectly matched at the desired frequency of
2 GHz where the value of magnitude is less than −22 dB with the bandwith of 2800 MHz. Matching
alsol occurs at frequencies where the Z1has a length of 2n + 1 λ0 4, n = 0, 1, 2, 3 . . .

Design of Multisection Quarter-Wave Transformer

In general, the single section transformer may be sufficient for narrow band impedance match. This
transformer can be extended to multisection in a methodical manner to yield optimum matching
characteristics over a wider bandwidth [1]. The following example is for the design of three section
Chebyshev matching transformer to match a 100 Ω load to a 50 Ω  with ripple level = 0 . 05. Each
section's characteristic impedances are computed using the formulas given in [1] and the values are
Z1 = 57 . 5Ω, Z2 = 70 . 7Ω and Z3 = 87Ω. The three section Chebyshev matching transformer is
designed by using same steps described in the design of single section quarter-wave transformer.

m50 = design(microstripLine,freq,"Z0",50,"LineLength",0.05); % input transmission line
m57 = design(microstripLine,freq,"Z0",57.5,"LineLength",0.25); % section 1
m70 = design(microstripLine,freq,"Z0",70.7,"LineLength",0.25); % section 2
m87 = design(microstripLine,freq,"Z0",87,"LineLength",0.25); % section 3
% ground plane dimension
gndL = 2*m50.Length+m57.Length+m70.Length+m87.Length;
gndW = 5*m50.Width;

ground = traceRectangular("Length",gndL,"Width",gndW);
% inpt transmission line
Z0 = traceRectangular("Length",m50.Length,"Width",m50.Width,...
    "Center",[-gndL/2+m50.Length/2 0]);
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% First section Quarter-wave transformer
Z1 = traceRectangular("Length",m57.Length,"Width",m57.Width,"Center",...
    [-gndL/2+m50.Length+m57.Length/2 0]);
% Second section Quarter-wave transformer
Z2 = traceRectangular("Length",m70.Length,"Width",m70.Width,"Center",...
    [-gndL/2+m50.Length+m57.Length+m70.Length/2 0]);
% Third section Quarter-wave transformer
Z3 = traceRectangular("Length",m87.Length,"Width",m87.Width,"Center",...
    [-gndL/2+m50.Length+m57.Length+m70.Length+m87.Length/2 0]);

qline = Z0+Z1+Z2+Z3;
% create pcbComponent
pcb =pcbComponent;
pcb.BoardShape = ground;
pcb.BoardThickness = m50.Height;
pcb.Layers ={qline,m50.Substrate,ground};
pcb.FeedDiameter = m50.Width/2;
pcb.FeedLocations = [-gndL/2 0 1 3];
pcb.ViaLocations = [-gndL/2+m50.Length+m57.Length+m70.Length+m87.Length,0,1,3];
pcb.ViaDiameter = m87.Width/2;
% Load
ZL = lumpedElement;
ZL.Impedance = 100;
ZL.Location = [-gndL/2+m50.Length+m57.Length+m70.Length+m87.Length,0,pcb.BoardThickness];
pcb.Load = ZL;
% show the three section quarter-wave transformer
figure;show(pcb)
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% Analysis
sparams3 = sparameters(pcb,linspace(100e6,8e9,51));
figure; rfplot(sparams3)

Comparison of S parameters

figure; rfplot(sparams,'-.')
hold on
rfplot(sparams3)
legend('dB(S_{11}) for N=1','dB(S_{11}) for N=3','Location','northeast')
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From the comparison the s-parameters plot for single section and three section quarter-wave
transformers designed at 2 GHz, it is observed that the bandwidth achieved for three section quarter-
wave transformer is 7750 MHz with improved impedance matching characteristics.Therefore, it is
evident that wider bandwidth is achieved for quarter-wave transformers with multiple sections.
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Corporate Feed Divider Network for a Linear Patch Antenna
array

This example shows how to integrate a corporate power divider with a microstrip patch antenna
array. The corporate power divider is available as a catalog element in RF PCB Toolbox. The patch
antenna array is built using the patchMicrostripInsetfed catalog element and pcbStack from
Antenna Toolbox.

Create Variables

Create the common variables.

f = 5e9;
c = physconst('lightspeed');

Create Corporate Power Divider

Use the powerDividerCorporate object to design the corporate power divider at 5 GHz and adjust
the spacing to wavelength. Use the show function to visualize it.

pdc = powerDividerCorporate;
pdc = design(pdc,f);
pdc.SplitterElement.Substrate.LossTangent = 0;
pdc.PortSpacing = c/f;
pdc.PortLineLength = 10e-3;
pdc.GroundPlaneWidth = pdc.PortSpacing*4;
figure,show(pdc);
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Use the sparameters function with Behavioral set to true.Plot s-parameters using the rfplot
function. As the computation takes time, load the pre-computed mat file and plot the result using
rfplot.

% out = sparameters(pdc,linspace(4e9,6e9,31),'Behavioral',true);
load pdc.mat
figure;
rfplot(sparPDC);

Create Inset Fed Patch Antenna

Use the patchMicrostripInsetfed object to design a microstrip inset fed patch that resonates at
5 GHz.

ant = patchMicrostripInsetfed;
ant.Substrate = dielectric('Teflon');
ant = design(ant,5e9);
ant.Height = 1.6e-3;
ant.Length = 20.5e-3;
ant.Width = 20.5e-3;
ant.StripLineWidth = pdc.PortLineWidth;
ant.NotchWidth = 7.1e-3;
ant.NotchLength = 5.9e-3;

Use the sparameters function to calculate the sparameters. As it takes more time to complete the
simulation the pre-computed result is loaded.

% out = sparameters(ant,linspace(4e9,6e9,31));
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Load the mat file and plot the sparameters using rfplot function.

load patch.mat
figure,rfplot(out);

Create pcbStack for Antenna

Use the pcbStack object to convert the patch antenna into a pcb stack so that the shape of the top
layer can be extracted from the Layers property. Convert into a linear array of 4 elements. The patch
is extracted from the Layers property of the pcbStack and the shape is copied and converted into a
linear array.

pcbant = pcbStack(ant);
TopLayer = pcbant.Layers{1};
TopLayer1 = copy(TopLayer);
for i = 2:4
    a = copy(TopLayer1);
    a = translate(a,[0,pdc.PortSpacing*(i-1),0]);
    TopLayer = TopLayer+a;
end
TopLayer = translate(TopLayer,[-ant.FeedLocation(1)+pdc.GroundPlaneLength/2,-pdc.PortSpacing*1.5,0]);

Create pcbComponent for Corporate Power Divider

Use the pcbComponent object and convert the corporate power divider into a PCB Component.
Create a new pcbStack object to construct the cascade of power divider corporate and patch
antennas. Assign all the properties of the pcbComponent to the pcbStack and then add the top layer
of the corporate power divider with the patch antenna array and visualize it.
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pcbcomp = pcbComponent(pdc);

pcbant1 = pcbStack;
pcbant1.BoardShape = pcbcomp.BoardShape;
pcbant1.BoardThickness =pcbcomp.BoardThickness;
pcbant1.Layers = pcbcomp.Layers;
pcbant1.FeedDiameter = pcbcomp.FeedDiameter;
pcbant1.FeedViaModel = pcbcomp.FeedViaModel;
pcbant1.FeedLocations = pcbcomp.FeedLocations;
pcbant1.Load = pcbcomp.Load;

a = pcbant1.Layers{1};
finalShape = a+TopLayer;
pcbant1.Layers{1} = finalShape;
feed = pcbant1.FeedLocations(1,:);
pcbant1.FeedLocations = feed;
gnd = pcbant1.Layers{3};
gnd.Length = gnd.Length+50e-3;
gnd.Width   = gnd.Width-20e-3;
gnd.Center(1) = 50e-3/2;
pcbant1.Layers{3} = gnd;
pcbant1.BoardShape = gnd;
figure,show(pcbant1);

Use the mesh function to manually mesh the structure and use the sparameters function to
compute the s-parameters. Generating a mesh and computing the result takes a lot of time as the
structure is large compared to the wavelength. Hence the lines are commented out.

 Corporate Feed Divider Network for a Linear Patch Antenna array

1-205



% figure,mesh(pcbant1,'MaxEdgeLength',6e-3);
% spar = sparameters(pcbant1,linspace(4e9,6e9,21));
% figure,pattern(pcbant1,4.9e9)

Load the precomputed result from PDCpatch.mat file and plot the results.

load PDCpatch.mat
figure;
rfplot(spar)

Use the patternCustom function to plot the 2-D or 3-D radiation pattern of an antenna magnitude,
magE over the specified phi and theta angle vectors.

phi = az';
theta = (90-el);
MagE = pat';
figure;
patternCustom(MagE,theta,phi);
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Microstrip Composite Bandpass Filters for Ultra-Wideband
(UWB) Wireless Communications

This example shows how to design and analyze a Low Pass Filter(LPF), High Pass Filter(HPF), and
cascade responses of the LPF and HPF as well as two variations of a composite filter as shown in the
paper[1].

The following steps are needed to create a filter:

1) Create the Geometry of the filter using RF PCB Shapes. Create a rectangle for the ground plane.

2) Use the pcbComponent and build the PCB stack. Set the BoardShape property of pcbComponent
which will set the shape of the dielectric substrate.

3) Assign the filter shape, dielectric, and ground plane to the Layers property of pcbComponent.

4) Set the FeedLocations and FeedDiameter. If the design has Vias then set the ViaLocations
and ViaDiameter.

5) Analyze the structure

Create Variables

Define the variables required to create the geometry for all the filter designs

PortLineL = 3e-3;
PortLineW = 1.6e-3;

Low Pass Filter

Create the variables and assign the values given in the paper[1]. Use the traceRectangular shape
to create all the rectangles as shown in the figure and join them to create the filter structure.
Visualize the structure using the show function.

Whi = 0.2e-3;
Wlo = 3.2e-3;
L1  = 1.02e-3;
L2  = 2.67e-3;
L3  = 2e-3;
L4  = 3.2e-3;
L5  = 2.09e-3;

a = traceRectangular('Length',PortLineL,'Width',PortLineW,'Center',[PortLineL/2,0]);
b = traceRectangular('Length',L1,'Width',Whi,'Center',[PortLineL+L1/2,0]);
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c = traceRectangular('Length',L2,'Width',Wlo,'Center',[PortLineL+L1+L2/2,0]);
d = traceRectangular('Length',L3,'Width',Whi,'Center',[PortLineL+L1+L2+L3/2,0]);
e = traceRectangular('Length',L4,'Width',Wlo,'Center',[PortLineL+L1+L2+L3+L4/2,0]);
f = traceRectangular('Length',L5,'Width',Whi,'Center',[PortLineL+L1+L2+L3+L4+L5/2,0]);
g = traceRectangular('Length',L4,'Width',Wlo,'Center',[PortLineL+L1+L2+L3+L4+L5+L4/2,0]);
h = traceRectangular('Length',L3,'Width',Whi,'Center',[PortLineL+L1+L2+L3+L4+L5+L4+L3/2,0]);
i = traceRectangular('Length',L2,'Width',Wlo,'Center',[PortLineL+L1+L2+L3+L4+L5+L4+L3+L2/2,0]);
j = traceRectangular('Length',L1,'Width',Whi,'Center',[PortLineL+L1+L2+L3+L4+L5+L4+L3+L2+L1/2,0]);
k = traceRectangular('Length',PortLineL,'Width',PortLineW,'Center',[PortLineL+L1+L2+L3+L4+L5+L4+L3+L2+L1+PortLineL/2,0]);
filt1 = a+b+c+d+e+f+g+h+i+j+k;
figure,show(filt1);

Create the PCB Stack of the filter using the pcbComponent object. Assign the filter shape, dielectric,
and groundplane to the Layers property. Set the BoardThickness to 0.508 mm and assign the
BoardShape to the ground plane. Set the FeedDiameter and FeedLocations. Visualize the PCB.

LPF                = pcbComponent;
d                  = dielectric('Teflon');
d.EpsilonR         = 2.2;
d.Thickness        = 0.508e-3;
GPL1               = PortLineL+L1+L2+L3+L4+L5+L4+L3+L2+L1+PortLineL;
GPW                = 20e-3;
gnd                = traceRectangular('Length',GPL1,'Width',GPW,'Center',[GPL1/2,0]);
LPF.Layers         = {filt1,d,gnd};
LPF.BoardThickness = 0.508e-3;
LPF.BoardShape     = gnd;
LPF.FeedDiameter   = PortLineW/2;
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LPF.FeedLocations  = [0,0,1,3;GPL1,0,1,3];
figure,show(LPF); 

Use sparameters function to calculate the S-Parameters of the filter and plot them using the
rfplot function.

spar1 = sparameters(LPF,linspace(0.1e9,16e9,51));
figure;
rfplot(spar1);
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High Pass Filter

Create the variables and assign the values given in the paper[1]. Use the traceRectangular shape
to create all the rectangles as shown in the figure and join them to create the filter structure.
Visualize the structure using the show function.
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Lstub = 6.35e-3;
Wstub = 0.238e-3

Wstub = 2.3800e-04

Linv  = 6.07e-3;
Winv  = 1.8e-3;
a = traceRectangular('Length',PortLineL,'Width',PortLineW,'Center',[PortLineL/2,0]);
b = traceRectangular('Length',Linv,'Width',Winv,'Center',[PortLineL+Linv/2,0]);
c = traceRectangular('Length',Linv+0.04e-3,'Width',Winv,'Center',[PortLineL+Linv+Linv/2+0.04e-3/2,0]);
d = traceRectangular('Length',PortLineL+0.1e-3,'Width',PortLineW,'Center',[PortLineL+Linv+Linv+PortLineL/2-0.1e-3/2,0]);
e = traceRectangular('Length',Wstub,'Width',Lstub,'Center',[PortLineL+Wstub/2,-Lstub/2-PortLineW/2]);
f = traceRectangular('Length',Wstub,'Width',Lstub,'Center',[PortLineL+Linv+Wstub/2,-Lstub/2-PortLineW/2]);
g = traceRectangular('Length',Wstub,'Width',Lstub,'Center',[PortLineL+Linv+Linv+Wstub/2,-Lstub/2-PortLineW/2]);
filt2 = a+b+c+d+e+f+g;
figure;
show(filt2);
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Create the PCB Stack of the filter using the pcbComponent. Assign the filter shape, dielectric, and
groundplane to the Layers property. Set the BoardThickness to 0.508 mm and assign the
BoardShape to the ground plane. Set the FeedDiameter and FeedLocations. Visualize the PCB.

HPF                = pcbComponent;
d                  = dielectric('Teflon');
d.EpsilonR         = 2.2;
d.Thickness        = 0.508e-3;
GPL2               = PortLineL+Linv+Linv+PortLineL;
GPW                = 20e-3;
gnd                = traceRectangular('Length',GPL2,'Width',GPW,'Center',[GPL2/2,0]);
HPF.Layers         = {filt2,d,gnd};
HPF.BoardThickness = 0.508e-3;
HPF.BoardShape     = gnd;
HPF.FeedDiameter   = PortLineW/2;
HPF.FeedLocations  = [0,0,1,3;GPL2,0,1,3];
HPF.ViaLocations   = [PortLineL+Wstub/2,-PortLineW/2-Lstub+0.2e-3,1,3;PortLineL+Linv+Wstub/2,-PortLineW/2-Lstub+0.2e-3,1,3;PortLineL+Linv+Linv+Wstub/2,-PortLineW/2-Lstub+0.2e-3,1,3];
HPF.ViaDiameter    = Wstub/2;
figure;
show(HPF);
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Use sparameters function to calculate the S-Parameters of the filter and plot them using the
rfplot function.

spar2 = sparameters(HPF,linspace(0.1e9,20e9,41));
figure;
rfplot(spar2);
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Cascaded Filter Response

Cascade the LPF and HPF created above and create a ground plane so that it supports the cascaded
shape.

filt12   = translate(copy(filt1),[-GPL1,0,0]);
filtcasc = filt12+filt2;
figure,show(filtcasc);
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Create the PCB Stack of the filter using the pcbComponent. Create the groundplane using the
traceRectangular shape. Assign the filter shape, dielectric, and groundplane to the Layers
property. Set the BoardThickness to 0.508 mm and assign the BoardShape to the ground plane.
Set the FeedDiameter and FeedLocations. Visualize the PCB.

casc                = pcbComponent;
d                   = dielectric('Teflon');
d.EpsilonR          = 2.2;
d.Thickness         = 0.508e-3;
GPL  = GPL1+GPL2;
GPW  = 20e-3;
gnd  = traceRectangular('Length',GPL,'Width',GPW,'Center',[(-GPL1+GPL2)/2,0]);
GPL3                = PortLineL+Linv+Linv+PortLineL;
casc.Layers         = {filtcasc,d,gnd};
casc.BoardThickness = 0.508e-3;
casc.BoardShape     = gnd;
casc.FeedDiameter   = PortLineW/2;
casc.FeedLocations  = [-GPL1,0,1,3;GPL3,0,1,3];
casc.ViaLocations   = [PortLineL+Wstub/2,-PortLineW/2-Lstub+0.2e-3,1,3;PortLineL+Linv+Wstub/2,-PortLineW/2-Lstub+0.2e-3,1,3;PortLineL+Linv+Linv+Wstub/2,-PortLineW/2-Lstub+0.2e-3,1,3];
casc.ViaDiameter    = Wstub/2;
figure;
show(casc);
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Use the sparameters function to calculate the S-Parameters and plot the parameters using the
rfplot function

spar3 = sparameters(casc,linspace(0.1e9,14e9,31));
figure;
rfplot(spar3);
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Composite Filter Type 1

Create the variables and assign the values given in the paper[1]. Use the traceRectangular shape
to create all the rectangles as shown in the figure and join them to create the filter structure.
Visualize the structure using the show function.
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L11 = 0.3e-3;
L12 = 0.73e-3;
L2  = 2.48e-3;
L31 = 2.07e-3;
L32 = 0.59e-3;
L4  = 3.28e-3;
Lstub1 = 2.4e-3;
Lstub2 = 2.4e-3;
a = traceRectangular('Length',PortLineL,'Width',PortLineW,'Center',[PortLineL/2,0]);
b = traceRectangular('Length',L11+L12,'Width',Whi,'Center',[PortLineL+(L11+L12)/2,0]);
c = traceRectangular('Length',L2,'Width',Wlo,'Center',[PortLineL+L11+L12+L2/2,0]);
d = traceRectangular('Length',L31+L32,'Width',Whi,'Center',[PortLineL+L11+L12+L2+(L31+L32)/2,0]);
e = traceRectangular('Length',L4,'Width',Wlo,'Center',[PortLineL+L11+L12+L2+(L31+L32)+L4/2,0]);
f = traceRectangular('Length',L31+L32,'Width',Whi,'Center',[PortLineL+L11+L12+L2+(L31+L32)+L4+(L31+L32)/2,0]);
g = traceRectangular('Length',L2,'Width',Wlo,'Center',[PortLineL+L11+L12+L2+(L31+L32)+L4+(L31+L32)+L2/2,0]);
h = traceRectangular('Length',L11+L12,'Width',Whi,'Center',[PortLineL+L11+L12+L2+(L31+L32)+L4+(L31+L32)+L2+(L11+L12)/2,0]);
i = traceRectangular('Length',PortLineL,'Width',PortLineW,'Center',[PortLineL+L11+L12+L2+(L31+L32)+L4+(L31+L32)+L2+(L11+L12)+PortLineL/2,0]);
j = traceRectangular('Length',Wstub,'Width',Lstub1,'Center',[PortLineL+L11,-Lstub1/2-Whi/2]);
k = traceRectangular('Length',Wstub,'Width',Lstub1,'Center',[PortLineL+L11+L12+L2+L31,-Lstub1/2-Whi/2]);
l = traceRectangular('Length',Wstub,'Width',Lstub1,'Center',[PortLineL+L11+L12+L2+L31+L32+L4+L32,Lstub1/2+Whi/2]);
m = traceRectangular('Length',Wstub,'Width',Lstub1,'Center',[PortLineL+L11+L12+L2+L31+L32+L4+L32+L31+L2+L12,Lstub1/2+Whi/2]);
compfiltShape1 = a+b+c+d+e+f+g+h+i+j+k+l+m;
figure;
show(compfiltShape1);
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Create the PCB Stack of the filter using the pcbComponent. Assign the filter shape, dielectric, and
groundplane to the Layers property. Set the BoardThickness to 0.508 mm and assign the
BoardShape to the ground plane. Set the FeedDiameter and FeedLocations. Visualize the PCB.

compfilt1 = pcbComponent;
d    = dielectric('Teflon');
d.EpsilonR  = 2.2;
d.Thickness = 0.508e-3;
GPL2 = PortLineL+2*(L11+L12)+2*(L31+L32)+2*L2+L4+PortLineL;
GPW  = 20e-3;
gnd  = traceRectangular('Length',GPL2,'Width',GPW/2,'Center',[(GPL2)/2,0]);
compfilt1.Layers         = {compfiltShape1,d,gnd};
compfilt1.BoardThickness = 0.508e-3;
compfilt1.BoardShape     = gnd;
compfilt1.FeedDiameter   = PortLineW/2;
compfilt1.FeedLocations  = [0,0,1,3;GPL2,0,1,3];
compfilt1.ViaLocations   = [PortLineL+L11,-Whi/2-Lstub1+0.1e-3,1,3;PortLineL+L11+L12+L2+L31,-Whi/2-Lstub1+0.1e-3,1,3;PortLineL+L11+L12+L2+L31+L32+L4+L32,Whi/2+Lstub1-0.1e-3,1,3;PortLineL+L11+L12+L2+L31+L32+L4+L32+L31+L2+L12,Whi/2+Lstub1-0.1e-3,1,3];
compfilt1.ViaDiameter    = Wstub/2;
figure;
show(compfilt1);
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Use the mesh function to generate a manual mesh with a MaxEdgeLength as 1 mm.

figure;
mesh(compfilt1,'MaxEdgeLength',1.2e-3);
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Use sparameters function to calculate the S-Parameters of the filter and plot them using the
rfplot function.

spar4 = sparameters(compfilt1,linspace(0.1e9,14e9,31));
figure;
rfplot(spar4);
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Composite Filter Type 2

Create the variables and assign the values given in the paper[1]. Use the traceRectangular shape
to create all the rectangles as shown in the figure and join them to create the filter structure.
Visualize the structure using the show function.

Whi = 0.2e-3;
Wlo = 3.2e-3;
L1  = 0.85e-3;
L2  = 3.22e-3;
L3  = 1.54e-3;
L4  = 3.39e-3;
L5  = 2.27e-3;
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Lstub1 = 3.45e-3;
a  = traceRectangular('Length',PortLineL,'Width',PortLineW,'Center',[PortLineL/2,0]);
b  = traceRectangular('Length',L1,'Width',Whi,'Center',[PortLineL+L1/2,0]);
c  = traceRectangular('Length',L2,'Width',Wlo,'Center',[PortLineL+L1+L2/2,0]);
l = traceRectangular('Length',Wstub,'Width',Lstub1,'Center',[PortLineL+L1+L2+L3/2,Lstub1/2+Whi/2]);
d  = traceRectangular('Length',L3,'Width',Whi,'Center',[PortLineL+L1+L2+L3/2,0]);
e  = traceRectangular('Length',L4,'Width',Wlo,'Center',[PortLineL+L1+L2+L3+L4/2,0]);
f  = traceRectangular('Length',L5,'Width',Whi,'Center',[PortLineL+L1+L2+L3+L4+L5/2,0]);
g  = traceRectangular('Length',L4,'Width',Wlo,'Center',[PortLineL+L1+L2+L3+L4+L5+L4/2,0]);
m = traceRectangular('Length',Wstub,'Width',Lstub1,'Center',[PortLineL+L1+L2+L3+L4+L5+L4+L3/2,Lstub1/2+Whi/2]);
h  = traceRectangular('Length',L3,'Width',Whi,'Center',[PortLineL+L1+L2+L3+L4+L5+L4+L3/2,0]);
i  = traceRectangular('Length',L2,'Width',Wlo,'Center',[PortLineL+L1+L2+L3+L4+L5+L4+L3+L2/2,0]);
j  = traceRectangular('Length',L1,'Width',Whi,'Center',[PortLineL+L1+L2+L3+L4+L5+L4+L3+L2+L1/2,0]);
k  = traceRectangular('Length',PortLineL,'Width',PortLineW,'Center',[PortLineL+L1+L2+L3+L4+L5+L4+L3+L2+L1+PortLineL/2,0]);
compfiltShape2 = a+b+c+d+e+f+g+h+i+j+k+l+m;
figure;
show(compfiltShape2);

Create the PCB Stack of the filter using the pcbComponent. Assign the filter shape, dielectric, and
groundplane to the Layers property. Set the BoardThickness to 0.508 mm and assign the
BoardShape to the ground plane. Set the FeedDiameter and FeedLocations. Visualize the PCB.

compfilt2 = pcbComponent;
d = dielectric('Teflon');
d.EpsilonR  = 2.2;
d.Thickness = 0.508e-3;
GPL1 = PortLineL+L1+L2+L3+L4+L5+L4+L3+L2+L1+PortLineL;
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GPW  = 20e-3;
gnd  = traceRectangular('Length',GPL1,'Width',GPW/2,'Center',[GPL1/2,0]);
compfilt2.Layers         = {compfiltShape2,d,gnd};
compfilt2.BoardThickness = 0.508e-3;
compfilt2.BoardShape     = gnd;
compfilt2.FeedDiameter   = PortLineW/2;
compfilt2.FeedLocations  = [0,0,1,3;GPL1,0,1,3];
compfilt2.ViaLocations   = [PortLineL+L1+L2+L3/2,Lstub1+Whi/2-0.2e-3,1,3;PortLineL+L1+L2+L3+L4+L5+L4+L3/2,Lstub1+Whi/2-0.2e-3,1,3];
compfilt2.ViaDiameter    = Wstub/2;
figure;
show(compfilt2);

Use the mesh function to generate a manual mesh with a MaxEdgeLength as 1.5 mm.

figure;
mesh(compfilt2,'MaxEdgeLength',1.5e-3);
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Use sparameters function to calculate the S-Parameters of the filter and plot them using the
rfplot function.

spar5 = sparameters(compfilt2,linspace(0.5e9,14e9,41));
figure;
rfplot(spar5);
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Method of Moments Solver for Metal and Dielectric Structures
In this section...
“MoM Formulation” on page 2-2
“Neighbor Region” on page 2-6
“Singularity Extraction” on page 2-7

Method of Moments computation technique for metal and dielectrics in a PCB.

A PCB consists of a metal part and a dielectric part. The first step in the computational solution of
electromagnetic problems is to discretize Maxwell's equations. The process results in this matrix-
vector system:

V = ZI

• V — Applied voltage vector. This signal can be voltage or power applied to the antenna or an
incident signal falling at the input port of the PCB component.

• I — Current vector that represents current on the PCB component surface.
• Z — Interaction matrix or impedance matrix that relates V to I. For calculating the interaction

matrix, the effect of metal and dielectric parts iof the PCB antenna are taken separately.

RF PCB Toolbox™ uses method of moments (MoM) to calculate the interaction matrix and solve
system equations.

MoM Formulation
The MoM formulation is split into three parts.

Discretization of Metals and Dielectrics

Discretization enables the formulation from the continuous domain to the discrete domain. This step
is called meshing. In the MoM formulation, the metal surface of the PCB is meshed into triangles and
the dielectric volume is meshed into tetrahedrons.
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Basis Functions
Metals

To calculate the surface currents on the PCB, first define basis functions. RF PCB Toolbox uses Rao-
Wilton-Glisson (RWG) [2] basis functions. The arrows show the direction of current flow.

The basis function includes a pair of adjacent (not necessarily coplanar) triangles and resembles a
small spatial dipole with linear current distribution. Each triangle is associated with a positive or
negative charge.

For any two triangle patches, tn+ and tn−, having areas An
+ and An

−, and sharing common edge ln, the
basis function is

f n(r ) =

ln
2An

+ ρ n
+S, r ∈ tn+

ln
2An

−ρ n
−S, r ∈ tn−

• ρ n
+ = r − r n

+ — Vector drawn from the free vertex of triangle tn+ to observation point r
• ρ n

− = r n
+− r  — Vector drawn from the observation point to the free vertex of the triangle tn−

and
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∇ ⋅ f n r =

ln
An

+ , r ∈ tn+

−
ln
An
− , r ∈ tn−

The basis function is zero outside the two adjacent triangles tn+ and tn−. The RWG vector basis function
is linear and has no flux (no normal component) through its boundary.

Dielectrics

Basis functions are used to represent unknown quantities. In the case of a PCB component, the
unknown quantities are the surface current on the metal structure and flux density due to dielectric
volume. RF PCB Toolbox uses Rao-Wilton-Glisson (RWG) [2] basis functions.

For the dielectric volume, RF PCB Toolbox uses a zeroth order edge basis function to model the flux
density.

The figure shows an edge-based basis function. The vector variation is perpendicular to the base edge
AB (or l ). The vector of the edge CD (or p) defines the basis function. Within a tetrahedron, the basis
function is a constant field given by

f = cp

• c – normalization coefficient.
• p – vector of the edge defining the basis function.

Interaction Matrix
Metals

The interaction matrix is a complex dense symmetric matrix. It is a square N-by-N matrix, where N is
the number of basis functions, that is, the number of interior edges in the structure. A typical
interaction matrix for a structure with 256 basis functions is shown:
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To fill out the interaction matrix, calculate the free-space Green's function between all basis functions
on the PCB surface. The final interaction matrix equations are:

Zmn = jωμ
4π ∫

S
∫
S

f m r . f m r′ gdr′dr − j
4πωε ∫

S
∫
S

∇ . f m ∇ . f m gdr′dr

where

•
g(r , r′) =

exp(− jk r − r′ )

r − r′
 — Free-space Green's function

To calculate the interaction matrix, excite the PCB by a voltage of 1 V at the input port. So the voltage
vector has zero values everywhere except at the feeding edge. Solve the system of equations to
calculate the unknown currents. Once you determine the unknown currents, you can calculate the
field and surface properties of the PCB.

Dielectrics

The interaction matrix is a complex dense symmetric matrix. To fill out the interaction matrix,
calculate the free-space Green's function between all the basis functions on the PCB surface. The
final interaction matrix equations are:

• ZMM – metal to metal interaction. For a pure metal structure, you only calculate this symmetric
square matrix.
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Zmn
MM = jωμ

4π ∫
S
∫
S

f
M

m r . f
M

n r′ gdr′dr − j
4πωε ∫

S
∫
S

∇ . f
M

m ∇ . f
M

n gdr′dr

• ZDD – dielectric to dielectric interaction. For pure dielectric structures, you only calculate this
symmetric square matrix.

Z mn
DD = ∑

p− 1

P
∑

p′− 1

P′ Kp
ε p
∫

VD
f mp(r ) ⋅ f np′(r )dr

−
ω2μ0
4π ∑

p− 1

P
∑

p′− 1

P′
KpKp′ ∫

VD
∫

VD′
g(r , r′)f mp(r ) ⋅ f np′(r′)dr dr′

− 1
4πε0

∑
q− 1

Q
∑

q′− 1

Q′
K qK q′ ∫

Ωq
∫

Ωq′
g(r , r′)f ⊥ mq(r )f ⊥ nq′(r′)dsds′ m, n = 1, ...., N

• ZMD and ZDM – These matrices calculate the interaction between metal and dielectric. This matrix is
not a symmetrical square matrix.

Zmn
MD = −

ω2μ0
4π ∑

p− 1

2
∑

p′− 1

P′
Kp∫

t
∫

VD′
f n

M
(r ) ⋅ f mp′(r′)g(r , r′)dr′ds

− 1
4πε0

∑
p− 1

2
∑

q− 1

Q
K q ∫

tD
∫

Ωq′
(∇s ⋅ f n

M
(r ))f ⊥ mq(r′)g(r , r′)dΩ′ds

m = 1, ...., ND; n = 1, ..., NM

Zmn
DM = −

jωμ0
4π ∑

p− 1

2
∑

p′− 1

P′
Kp′ ∫

VD
∫

SD′
f np(r ) ⋅ f m

M
(r′)g(r , r′)ds′dr

+ 1
4πε0ω ∑p− 1

2
∑

q− 1

Q
K q ∫

Ωq
∫

SD′
f ⊥ nq(r ) ⋅ (∇s ⋅ f m

M
(r′))g(r , r′)ds′dΩ

m = 1, ...., ND; n = 1, ..., NM

where

• g(r , r′) = exp(− jkR)
R , R = r − r′  is the free space Green's function.

•
K =

ε ±− ε0

ε ±  is the complex dielectric constant within every tetrahedron.

• K q = K+− K− is the differential contrast on every face of the tetrahedron.

For a composite metal structure, you must calculate all four matrices.

Neighbor Region
From the interaction matrix plot, you observe that the matrix is diagonally dominant. As you move
further away from the diagonal, the magnitude of the terms decreases. This behavior is same as the
Green's function behavior. The Green's function decreases as the distance between r and r' increases.
Therefore, it is important to calculate the region on the diagonal and close to the diagonal accurately.
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This region on and around the diagonal is called neighbor region. The neighbor region is defined
within a sphere of radius R, where R is in terms of triangle size. The size of a triangle is the maximum
distance from the center of the triangle to any of its vertices. By default, R is twice the size of the
triangle. For better accuracy, a higher-order integration scheme is used to calculate the integrals. The
figure shows a typical interaction matrix for a metal structure ZMM with 256 basis functions.

The dielectric interaction matrix is also diagonally dominant. As you move further away from the
diagonal, the magnitude of the terms decreases. This behavior is same as the Green's function
behavior. The Green's function decreases as the distance between r and r' increases. Therefore, it is
important to calculate the region on the diagonal and close to the diagonal accurately. For a dielectric
the neighbor region is based on the average size of the tetrahedron.

Singularity Extraction
Along the diagonal, r and r' are equal and defines Green's function becomes singular. To remove the
singularity, extraction is performed on these terms.
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∫
tp
∫

tq
ρ i . ρ ′ j g(r , r′)ds′ds = ∫

tp
∫

tq

ρ i . ρ ′ j
r − r′

ds′ds + ∫
tp
∫

tq

exp − jk r − r′ − 1 ρ i . ρ ′ j

r − r′
ds′ds

∫
tp
∫

tq
g(r , r′)ds′ds = ∫

tp
∫

tq

1
r − r′

ds′ds + ∫
tp
∫

tq

exp − jk r − r′ − 1

r − r′
ds′ds

The two integrals on the right-hand side of the equations, called potential or static integrals are found
using analytical results [3].

The equations for the singularity extraction of the ZDD matrix are:

∫
VD
∫

VD′
g(r , r′)dr dr′ = ∫

VD
∫

Vq

1
r − r′

dr dr′ + ∫
VD
∫

Vq

exp − jk r − r′ − 1

r − r′
dr dr′

∫
Ωq
∫

Ωq′
g(r , r′)dΩdΩ′ = ∫

ΩD
∫

Ωq

1
r − r′

dΩdΩ′ + ∫
SD
∫

Sq

exp − jk r − r′ − 1

r − r′
dΩdΩ
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